Anatomically diverse butterfly scales all produce structural colours by coherent scattering - PubMed
. 2006 Feb;209(Pt 4):748-65.
doi: 10.1242/jeb.02051.
Affiliations
- PMID: 16449568
- DOI: 10.1242/jeb.02051
Anatomically diverse butterfly scales all produce structural colours by coherent scattering
Richard O Prum et al. J Exp Biol. 2006 Feb.
Abstract
The structural colours of butterflies and moths (Lepidoptera) have been attributed to a diversity of physical mechanisms, including multilayer interference, diffraction, Bragg scattering, Tyndall scattering and Rayleigh scattering. We used fibre optic spectrophotometry, transmission electron microscopy (TEM) and 2D Fourier analysis to investigate the physical mechanisms of structural colour production in twelve lepidopteran species from four families, representing all of the previously proposed anatomical and optical classes of butterfly nanostructure. The 2D Fourier analyses of TEMs of colour producing butterfly scales document that all species are appropriately nanostructured to produce visible colours by coherent scattering, i.e. differential interference and reinforcement of scattered, visible wavelengths. Previously hypothesized to produce a blue colour by incoherent, Tyndall scattering, the scales of Papilio zalmoxis are not appropriately nanostructured for incoherent scattering. Rather, available data indicate that the blue of P. zalmoxis is a fluorescent pigmentary colour. Despite their nanoscale anatomical diversity, all structurally coloured butterfly scales share a single fundamental physical color production mechanism - coherent scattering. Recognition of this commonality provides a new perspective on how the nanostructure and optical properties of structurally coloured butterfly scales evolved and diversified among and within lepidopteran clades.
Similar articles
-
Prum RO, Cole JA, Torres RH. Prum RO, et al. J Exp Biol. 2004 Oct;207(Pt 22):3999-4009. doi: 10.1242/jeb.01240. J Exp Biol. 2004. PMID: 15472030
-
Prum RO, Torres R. Prum RO, et al. J Exp Biol. 2003 Jul;206(Pt 14):2409-29. doi: 10.1242/jeb.00431. J Exp Biol. 2003. PMID: 12796458
-
Prum RO, Torres RH. Prum RO, et al. J Exp Biol. 2004 May;207(Pt 12):2157-72. doi: 10.1242/jeb.00989. J Exp Biol. 2004. PMID: 15143148
-
Otaki JM. Otaki JM. J Insect Physiol. 2008 Jul;54(7):1099-112. doi: 10.1016/j.jinsphys.2008.05.006. Epub 2008 Jul 1. J Insect Physiol. 2008. PMID: 18638480 Review.
-
Structural colors in nature: the role of regularity and irregularity in the structure.
Kinoshita S, Yoshioka S. Kinoshita S, et al. Chemphyschem. 2005 Aug 12;6(8):1442-59. doi: 10.1002/cphc.200500007. Chemphyschem. 2005. PMID: 16015669 Review.
Cited by
-
Varija Raghu S, Thamankar R. Varija Raghu S, et al. ACS Omega. 2020 Sep 9;5(37):23662-23671. doi: 10.1021/acsomega.0c02314. eCollection 2020 Sep 22. ACS Omega. 2020. PMID: 32984686 Free PMC article.
-
Optical Detection of Vapor Mixtures Using Structurally Colored Butterfly and Moth Wings.
Piszter G, Kertész K, Bálint Z, Biró LP. Piszter G, et al. Sensors (Basel). 2019 Jul 11;19(14):3058. doi: 10.3390/s19143058. Sensors (Basel). 2019. PMID: 31336702 Free PMC article.
-
Yoshioka S, Fujita H, Kinoshita S, Matsuhana B. Yoshioka S, et al. J R Soc Interface. 2013 Dec 18;11(92):20131029. doi: 10.1098/rsif.2013.1029. Print 2014 Mar 6. J R Soc Interface. 2013. PMID: 24352678 Free PMC article.
-
Orientation-Dependent Reflection of Structurally Coloured Butterflies.
Zobl S, Wilts BD, Salvenmoser W, Pölt P, Gebeshuber IC, Schwerte T. Zobl S, et al. Biomimetics (Basel). 2020 Feb 3;5(1):5. doi: 10.3390/biomimetics5010005. Biomimetics (Basel). 2020. PMID: 32028633 Free PMC article.
-
Virus based Full Colour Pixels using a Microheater.
Kim WG, Kim K, Ha SH, Song H, Yu HW, Kim C, Kim JM, Oh JW. Kim WG, et al. Sci Rep. 2015 Sep 3;5:13757. doi: 10.1038/srep13757. Sci Rep. 2015. PMID: 26334322 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources