The hemocyanin from a living fossil, the cephalopod Nautilus pompilius: protein structure, gene organization, and evolution - PubMed
The hemocyanin from a living fossil, the cephalopod Nautilus pompilius: protein structure, gene organization, and evolution
Sandra Bergmann et al. J Mol Evol. 2006 Mar.
Abstract
By electron microscopic and immunobiochemical analyses we have confirmed earlier evidence that Nautilus pompilius hemocyanin (NpH) is a ring-like decamer (M(r) = approximately 3.5 million), assembled from 10 identical copies of an approximately 350-kDa polypeptide. This subunit in turn is substructured into seven sequential covalently linked functional units of approximately 50 kDa each (FUs a-g). We have cloned and sequenced the cDNA encoding the complete polypeptide; it comprises 9198 bp and is subdivided into a 5' UTR of 58 bp, a 3' UTR of 365 bp, and an open reading frame for a signal peptide of 21 amino acids plus a polypeptide of 2903 amino acids (M(r) = 335,881). According to sequence alignments, the seven FUs of Nautilus hemocyanin directly correspond to the seven FU types of the previously sequenced hemocyanin "OdH" from the cephalopod Octopus dofleini. Thirteen potential N-glycosylation sites are distributed among the seven Nautilus hemocyanin FUs; the structural consequences of putatively attached glycans are discussed on the basis of the published X-ray structure for an Octopus dofleini and a Rapana thomasiana FU. Moreover, the complete gene structure of Nautilus hemocyanin was analyzed; it resembles that of Octopus hemocyanin with respect to linker introns but shows two internal introns that differ in position from the three internal introns of the Octopus hemocyanin gene. Multiple sequence alignments allowed calculation of a rather robust phylogenetic tree and a statistically firm molecular clock. This reveals that the last common ancestor of Nautilus and Octopus lived 415 +/- 24 million years ago, in close agreement with fossil records from the early Devonian.
Similar articles
-
Lieb B, Boisguérin V, Gebauer W, Markl J. Lieb B, et al. J Mol Evol. 2004 Oct;59(4):536-45. doi: 10.1007/s00239-004-2646-3. J Mol Evol. 2004. PMID: 15638465
-
Gatsogiannis C, Moeller A, Depoix F, Meissner U, Markl J. Gatsogiannis C, et al. J Mol Biol. 2007 Nov 23;374(2):465-86. doi: 10.1016/j.jmb.2007.09.036. Epub 2007 Sep 20. J Mol Biol. 2007. PMID: 17936782
-
The first complete cDNA sequence of the hemocyanin from a bivalve, the protobranch Nucula nucleus.
Bergmann S, Markl J, Lieb B. Bergmann S, et al. J Mol Evol. 2007 May;64(5):500-10. doi: 10.1007/s00239-006-0036-8. Epub 2007 May 2. J Mol Evol. 2007. PMID: 17476452
-
Evolution of molluscan hemocyanin structures.
Markl J. Markl J. Biochim Biophys Acta. 2013 Sep;1834(9):1840-52. doi: 10.1016/j.bbapap.2013.02.020. Epub 2013 Feb 21. Biochim Biophys Acta. 2013. PMID: 23454609 Review.
-
Adhesive mechanisms in cephalopods: a review.
von Byern J, Klepal W. von Byern J, et al. Biofouling. 2006;22(5-6):329-38. doi: 10.1080/08927010600967840. Biofouling. 2006. PMID: 17110356 Review.
Cited by
-
The Planorbid Snail Biomphalaria glabrata Expresses a Hemocyanin-Like Sequence in the Albumen Gland.
Peña JJ, Adema CM. Peña JJ, et al. PLoS One. 2016 Dec 30;11(12):e0168665. doi: 10.1371/journal.pone.0168665. eCollection 2016. PLoS One. 2016. PMID: 28036345 Free PMC article.
-
Positive selection in octopus haemocyanin indicates functional links to temperature adaptation.
Oellermann M, Strugnell JM, Lieb B, Mark FC. Oellermann M, et al. BMC Evol Biol. 2015 Jul 5;15:133. doi: 10.1186/s12862-015-0411-4. BMC Evol Biol. 2015. PMID: 26142723 Free PMC article.
-
Chiumiento IR, Ituarte S, Sun J, Qiu JW, Heras H, Dreon MS. Chiumiento IR, et al. PLoS One. 2020 Jan 30;15(1):e0228325. doi: 10.1371/journal.pone.0228325. eCollection 2020. PLoS One. 2020. PMID: 31999773 Free PMC article.
-
Schäfer GG, Pedrini-Martha V, Jackson DJ, Dallinger R, Lieb B. Schäfer GG, et al. BMC Ecol Evol. 2021 Mar 4;21(1):36. doi: 10.1186/s12862-021-01763-3. BMC Ecol Evol. 2021. PMID: 33663373 Free PMC article.
-
Loss of the six3/6 controlling pathways might have resulted in pinhole-eye evolution in Nautilus.
Ogura A, Yoshida MA, Moritaki T, Okuda Y, Sese J, Shimizu KK, Sousounis K, Tsonis PA. Ogura A, et al. Sci Rep. 2013;3:1432. doi: 10.1038/srep01432. Sci Rep. 2013. PMID: 23478590 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources