Identification of functionally relevant residues of the rat ileal apical sodium-dependent bile acid cotransporter - PubMed
- ️Sun Jan 01 2006
. 2006 Jun 16;281(24):16410-8.
doi: 10.1074/jbc.M600034200. Epub 2006 Apr 11.
Affiliations
- PMID: 16608845
- DOI: 10.1074/jbc.M600034200
Free article
Identification of functionally relevant residues of the rat ileal apical sodium-dependent bile acid cotransporter
An-Qiang Sun et al. J Biol Chem. 2006.
Free article
Abstract
The mechanisms underlying the transport of bile acids by apical sodium-dependent bile acid transporter (Asbt) are not well defined. To further identify the functionally relevant residues, thirteen conserved negatively (Asp and Glu) and positively (Lys and Arg) charged residues plus Cys-270 of rat Asbt were replaced with Ala or Gln by site-directed mutagenesis. Seven of the fourteen residues of rat Asbt were identified as functionally important by taurocholate transport studies, substrate inhibition assays, confocal microscopy, and electrophysiological methods. The results showed that Asp-122, Lys-191, Lys-225, Lys-256, Glu-261, and Lys-312,Lys-313 residues of rat Asbt are critical for transport function and may determine substrate specificity. Arg-64 may be located at a different binding site to assist in interaction with non-bile acid organic anions. For bile acid transport by Asbt, Na(+) ion movement is a voltage-dependent process that tightly companied with taurocholate movement. Asp-122 and Glu-261 play a critical role in the interaction of a Na(+) ion and ligand with Asbt. Cys-270 is not essential for the transport process. These studies provide new details about the amino acid residues of Asbt involved in binding and transport of bile acids and Na(+).
Similar articles
-
Hallén S, Björquist A, Ostlund-Lindqvist AM, Sachs G. Hallén S, et al. Biochemistry. 2002 Dec 17;41(50):14916-24. doi: 10.1021/bi0205404. Biochemistry. 2002. PMID: 12475240
-
Lazaridis KN, Pham L, Tietz P, Marinelli RA, deGroen PC, Levine S, Dawson PA, LaRusso NF. Lazaridis KN, et al. J Clin Invest. 1997 Dec 1;100(11):2714-21. doi: 10.1172/JCI119816. J Clin Invest. 1997. PMID: 9389734 Free PMC article.
-
Sun AQ, Ananthanarayanan M, Soroka CJ, Thevananther S, Shneider BL, Suchy FJ. Sun AQ, et al. Am J Physiol. 1998 Nov;275(5):G1045-55. doi: 10.1152/ajpgi.1998.275.5.G1045. Am J Physiol. 1998. PMID: 9815035
-
Intestinal bile acid transport: biology, physiology, and pathophysiology.
Shneider BL. Shneider BL. J Pediatr Gastroenterol Nutr. 2001 Apr;32(4):407-17. doi: 10.1097/00005176-200104000-00002. J Pediatr Gastroenterol Nutr. 2001. PMID: 11396803 Review.
-
Bile acid transporters: structure, function, regulation and pathophysiological implications.
Alrefai WA, Gill RK. Alrefai WA, et al. Pharm Res. 2007 Oct;24(10):1803-23. doi: 10.1007/s11095-007-9289-1. Epub 2007 Apr 3. Pharm Res. 2007. PMID: 17404808 Review.
Cited by
-
da Silva TC, Hussainzada N, Khantwal CM, Polli JE, Swaan PW. da Silva TC, et al. J Biol Chem. 2011 Aug 5;286(31):27322-32. doi: 10.1074/jbc.M110.217802. Epub 2011 Jun 6. J Biol Chem. 2011. PMID: 21646357 Free PMC article.
-
Wu MR, Hsiao JK. Wu MR, et al. Int J Mol Sci. 2020 Mar 23;21(6):2202. doi: 10.3390/ijms21062202. Int J Mol Sci. 2020. PMID: 32209977 Free PMC article.
-
Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT.
Hu NJ, Iwata S, Cameron AD, Drew D. Hu NJ, et al. Nature. 2011 Oct 5;478(7369):408-11. doi: 10.1038/nature10450. Nature. 2011. PMID: 21976025 Free PMC article.
-
Yan H, Peng B, Liu Y, Xu G, He W, Ren B, Jing Z, Sui J, Li W. Yan H, et al. J Virol. 2014 Mar;88(6):3273-84. doi: 10.1128/JVI.03478-13. Epub 2014 Jan 3. J Virol. 2014. PMID: 24390325 Free PMC article.
-
Hussainzada N, Claro Da Silva T, Swaan PW. Hussainzada N, et al. Biochemistry. 2009 Sep 15;48(36):8528-39. doi: 10.1021/bi900616w. Biochemistry. 2009. PMID: 19653651 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources