Identifying sequence regions undergoing conformational change via predicted continuum secondary structure - PubMed
- ️Sun Jan 01 2006
. 2006 Aug 1;22(15):1809-14.
doi: 10.1093/bioinformatics/btl198. Epub 2006 May 23.
Affiliations
- PMID: 16720586
- DOI: 10.1093/bioinformatics/btl198
Identifying sequence regions undergoing conformational change via predicted continuum secondary structure
Mikael Bodén et al. Bioinformatics. 2006.
Abstract
Motivation: Conformational flexibility is essential to the function of many proteins, e.g. catalytic activity. To assist efforts in determining and exploring the functional properties of a protein, it is desirable to automatically identify regions that are prone to undergo conformational changes. It was recently shown that a probabilistic predictor of continuum secondary structure is more accurate than categorical predictors for structurally ambivalent sequence regions, suggesting that such models are suited to characterize protein flexibility.
Results: We develop a computational method for identifying regions that are prone to conformational change directly from the amino acid sequence. The method uses the entropy of the probabilistic output of an 8-class continuum secondary structure predictor. Results for 171 unique amino acid sequences with well-characterized variable structure (identified in the 'Macromolecular movements database') indicate that the method is highly sensitive at identifying flexible protein regions, but false positives remain a problem. The method can be used to explore conformational flexibility of proteins (including hypothetical or synthetic ones) whose structure is yet to be determined experimentally.
Availability: The predictor, sequence data and supplementary studies are available at http://pprowler.itee.uq.edu.au/sspred/ and are free for academic use.
Similar articles
-
Protein secondary structure: entropy, correlations and prediction.
Crooks GE, Brenner SE. Crooks GE, et al. Bioinformatics. 2004 Jul 10;20(10):1603-11. doi: 10.1093/bioinformatics/bth132. Epub 2004 Feb 26. Bioinformatics. 2004. PMID: 14988117
-
Song J, Yuan Z, Tan H, Huber T, Burrage K. Song J, et al. Bioinformatics. 2007 Dec 1;23(23):3147-54. doi: 10.1093/bioinformatics/btm505. Epub 2007 Oct 17. Bioinformatics. 2007. PMID: 17942444
-
Prediction of unfolded segments in a protein sequence based on amino acid composition.
Coeytaux K, Poupon A. Coeytaux K, et al. Bioinformatics. 2005 May 1;21(9):1891-900. doi: 10.1093/bioinformatics/bti266. Epub 2005 Jan 18. Bioinformatics. 2005. PMID: 15657106
-
Otaki JM, Gotoh T, Yamamoto H. Otaki JM, et al. Biotechnol Annu Rev. 2008;14:109-41. doi: 10.1016/S1387-2656(08)00004-5. Biotechnol Annu Rev. 2008. PMID: 18606361 Review.
-
Fink AL. Fink AL. Curr Opin Struct Biol. 2005 Feb;15(1):35-41. doi: 10.1016/j.sbi.2005.01.002. Curr Opin Struct Biol. 2005. PMID: 15718131 Review.
Cited by
-
Protein 8-class secondary structure prediction using conditional neural fields.
Wang Z, Zhao F, Peng J, Xu J. Wang Z, et al. Proteomics. 2011 Oct;11(19):3786-92. doi: 10.1002/pmic.201100196. Epub 2011 Aug 31. Proteomics. 2011. PMID: 21805636 Free PMC article.
-
Predicting protein flexibility through the prediction of local structures.
Bornot A, Etchebest C, de Brevern AG. Bornot A, et al. Proteins. 2011 Mar;79(3):839-52. doi: 10.1002/prot.22922. Epub 2010 Dec 6. Proteins. 2011. PMID: 21287616 Free PMC article.
-
Improved disorder prediction by combination of orthogonal approaches.
Schlessinger A, Punta M, Yachdav G, Kajan L, Rost B. Schlessinger A, et al. PLoS One. 2009;4(2):e4433. doi: 10.1371/journal.pone.0004433. Epub 2009 Feb 11. PLoS One. 2009. PMID: 19209228 Free PMC article.
-
Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs.
Chen K, Kurgan LA, Ruan J. Chen K, et al. BMC Struct Biol. 2007 Apr 16;7:25. doi: 10.1186/1472-6807-7-25. BMC Struct Biol. 2007. PMID: 17437643 Free PMC article.
-
Kuznetsov IB, McDuffie M. Kuznetsov IB, et al. Bioinformation. 2008;3(3):134-6. doi: 10.6026/97320630003134. Epub 2008 Nov 5. Bioinformation. 2008. PMID: 19238251 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources