A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism - PubMed
- ️Sun Jan 01 2006
A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism
Buck S Samuel et al. Proc Natl Acad Sci U S A. 2006.
Abstract
Our colons harbor trillions of microbes including a prominent archaeon, Methanobrevibacter smithii. To examine the contributions of Archaea to digestive health, we colonized germ-free mice with Bacteroides thetaiotaomicron, an adaptive bacterial forager of the polysaccharides that we consume, with or without M. smithii or the sulfate-reducing bacterium Desulfovibrio piger. Whole-genome transcriptional profiling of B. thetaiotaomicron, combined with mass spectrometry, revealed that, unlike D. piger, M. smithii directs B. thetaiotaomicron to focus on fermentation of dietary fructans to acetate, whereas B. thetaiotaomicron-derived formate is used by M. smithii for methanogenesis. B. thetaiotaomicron-M. smithii cocolonization produces a significant increase in host adiposity compared with monoassociated, or B. thetaiotaomicron-D. piger biassociated, animals. These findings demonstrate a link between this archaeon, prioritized bacterial utilization of polysaccharides commonly encountered in our modern diets, and host energy balance.
Conflict of interest statement
Conflict of interest statement: No conflicts declared.
Figures

Cocolonization with M. smithii (Ms) and B. thetaiotaomicron (Bt) enhances the representation of both species in the distal intestines of gnotobiotic mice. The density of colonization was defined by using quantitative PCR of DNA isolated from the cecal contents of monoassociated and biassociated mice (n = 5 per group per experiment; three independent experiments; each sample assayed in triplicate; mean values ± SEM plotted); ∗, P < 0.05 vs. monoassociated controls. Bt and Bt + Ms represent the number of B. thetaiotaomicron cells present in mice colonized with Bt alone or with Bt + Ms, respectively; Ms and Ms + Bt represent the number of M. smithii cells present in mice colonized with Ms alone or with Ms + Bt, respectively.

M. smithii enhances B. thetaiotaomicron polyfructose-containing glycan degradation in the distal gut. Results of GeneChip analysis of RNA isolated from cecal contents of individual mice colonized with B. thetaiotaomicron ± M. smithii (n = 4–5 per group) are shown. (A) Unsupervised hierarchical clustering (
dchip) of B. thetaiotaomicron (Bt) glycoside hydrolases (GH) and polysaccharide lysases (PL) that are up-regulated (13 genes) or down-regulated (57 genes) in the presence of M. smithii (Ms). Some GH/PL families represented in this data set are highlighted by using the classification scheme in CAZy (
http://afmb.cnrs-mrs.fr/CAZY/acc.html; see Table 2 for a complete list). Each column represents data obtained from a cecal sample harvested from an individual mouse, whereas each row represents a B. thetaiotaomicron GH or PL gene. (B) B. thetaiotaomicron polyfructose degradation cluster induced in the presence of M. smithii (see Table 1 for fold changes defined by GeneChip). (C) Biochemical analysis of fructan and glucan levels in cecal contents (n = 5 mice per group; each sample assayed in duplicate; mean values ± SEM plotted). ∗, P < 0.05.

Biassociation with B. thetaiotaomicron and M. smithii increases B. thetaiotaomicron production of acetate and formate. (A) qRT-PCR analysis (boxed numbers) of the effects of M. smithii on expression of selected B. thetaiotaomicron genes encoding enzymes involved in fermentation of polyfructose-containing glycans: fructofuranosidases, BT1765/BT1759; fructokinase, BT1757; phosphofructokinase, BT0307; pyruvate:formate lyase, BT4738; acetate kinase, BT3963, methylmalonyl-CoA decarboxylase, BT1688; butyrate kinase, BT2552. Enzyme classification (EC) numbers are provided in parentheses. Dotted lines indicate multistep pathways. (Expression of fructofuranosidases, acetate kinase, puruvate:formate lyase, and butyrate kinase is constant if the colonization period is extended from 14 to 28 d; see Table 3.) (B) GC-MS analyses of cecal SCFAs (n = 5 per group; each sample assayed in duplicate; mean values ± SEM plotted; ∗, P < 0.05). (C) qRT-PCR study of the in vivo expression of M. smithii genes in a cluster (Lower) containing a formate transporter and dehydrogenase (fdhCAB) plus tungsten-containing formylmethanofuran dehydrogenase subunits (fwdEFDBAC) (n = 5 per group; each sample assayed in triplicate; mean values ± SEM plotted; ∗, P < 0.05).

Cocolonization of mice with M. smithii and B. thetaiotaomicron enhances host energy storage. (A) GC-MS analyses of acetate in sera obtained by retro-orbital phlebotomy from fasted (4 h) 12-week-old male GF, B. thetaiotaomicron monoassociated, and biassociated [B. thetaiotaomicron/M. smithii or B. thetaiotaomicron/D. piger (Dp)] gnotobiotic mice (n = 5 per group per experiment; two independent experiments; mean ± SEM are plotted). (B) Liver triglyceride levels (n = 5 per group; each assayed in duplicate; mean ± SEM plotted). (C) Epididymal fat pad weights (n = 5 per group per experiment; two independent experiments; mean ± SEM plotted). ∗, P < 0.05; ∗∗, P < 0.01; ∗∗∗, P < 0.005.
Similar articles
-
Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut.
Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, Latreille P, Kim K, Wilson RK, Gordon JI. Samuel BS, et al. Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10643-8. doi: 10.1073/pnas.0704189104. Epub 2007 Jun 11. Proc Natl Acad Sci U S A. 2007. PMID: 17563350 Free PMC article.
-
Metabolic Synergy between Human Symbionts Bacteroides and Methanobrevibacter.
Catlett JL, Carr S, Cashman M, Smith MD, Walter M, Sakkaff Z, Kelley C, Pierobon M, Cohen MB, Buan NR. Catlett JL, et al. Microbiol Spectr. 2022 Jun 29;10(3):e0106722. doi: 10.1128/spectrum.01067-22. Epub 2022 May 10. Microbiol Spectr. 2022. PMID: 35536023 Free PMC article.
-
Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI. Samuel BS, et al. Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16767-72. doi: 10.1073/pnas.0808567105. Epub 2008 Oct 17. Proc Natl Acad Sci U S A. 2008. PMID: 18931303 Free PMC article.
-
How host-microbial interactions shape the nutrient environment of the mammalian intestine.
Hooper LV, Midtvedt T, Gordon JI. Hooper LV, et al. Annu Rev Nutr. 2002;22:283-307. doi: 10.1146/annurev.nutr.22.011602.092259. Epub 2002 Apr 4. Annu Rev Nutr. 2002. PMID: 12055347 Review.
-
Bacteroides thetaiotaomicron: a dynamic, niche-adapted human symbiont.
Comstock LE, Coyne MJ. Comstock LE, et al. Bioessays. 2003 Oct;25(10):926-9. doi: 10.1002/bies.10350. Bioessays. 2003. PMID: 14505359 Review.
Cited by
-
Exploring Bacterial Attributes That Underpin Symbiont Life in the Monogastric Gut.
Tannock GW. Tannock GW. Appl Environ Microbiol. 2022 Sep 22;88(18):e0112822. doi: 10.1128/aem.01128-22. Epub 2022 Aug 29. Appl Environ Microbiol. 2022. PMID: 36036591 Free PMC article. Review.
-
Sequencing of seven haloarchaeal genomes reveals patterns of genomic flux.
Lynch EA, Langille MG, Darling A, Wilbanks EG, Haltiner C, Shao KS, Starr MO, Teiling C, Harkins TT, Edwards RA, Eisen JA, Facciotti MT. Lynch EA, et al. PLoS One. 2012;7(7):e41389. doi: 10.1371/journal.pone.0041389. Epub 2012 Jul 24. PLoS One. 2012. PMID: 22848480 Free PMC article.
-
Popa E, Perera N, Kibédi-Szabó CZ, Guy-Evans H, Evans DR, Purcarea C. Popa E, et al. J Mol Microbiol Biotechnol. 2012;22(5):287-99. doi: 10.1159/000342520. Epub 2012 Oct 27. J Mol Microbiol Biotechnol. 2012. PMID: 23107800 Free PMC article.
-
Transcriptional interactions suggest niche segregation among microorganisms in the human gut.
Plichta DR, Juncker AS, Bertalan M, Rettedal E, Gautier L, Varela E, Manichanh C, Fouqueray C, Levenez F, Nielsen T, Doré J, Machado AM, de Evgrafov MC, Hansen T, Jørgensen T, Bork P, Guarner F, Pedersen O; Metagenomics of the Human Intestinal Tract (MetaHIT) Consortium; Sommer MO, Ehrlich SD, Sicheritz-Pontén T, Brunak S, Nielsen HB. Plichta DR, et al. Nat Microbiol. 2016 Aug 26;1(11):16152. doi: 10.1038/nmicrobiol.2016.152. Nat Microbiol. 2016. PMID: 27564131
-
Holmes ZC, Silverman JD, Dressman HK, Wei Z, Dallow EP, Armstrong SC, Seed PC, Rawls JF, David LA. Holmes ZC, et al. mBio. 2020 Aug 11;11(4):e00914-20. doi: 10.1128/mBio.00914-20. mBio. 2020. PMID: 32788375 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources