Spring model of biological attachment pads - PubMed
- ️Sun Jan 01 2006
. 2006 Nov 7;243(1):48-53.
doi: 10.1016/j.jtbi.2006.05.023. Epub 2006 Jun 13.
Affiliations
- PMID: 16846614
- DOI: 10.1016/j.jtbi.2006.05.023
Spring model of biological attachment pads
M Schargott et al. J Theor Biol. 2006.
Abstract
Many animals bear adhesive pads on their limbs to attach to a variety of surfaces. Previous force measurements on pads of the great green bushcricket (Tettigonia viridissima) have shown that the maximum adhesion force depends on the initially applied force [Jiao et al., 2000. J. Exp. Biol. 203 (12), 1887-1895]. We have developed a model that explains this behaviour. The adhesive pad is modelled as a flexible layer that consists of independent linear springs connected to a rigid sphere. Each spring can generate an adhesive contact with the surface by means of the capillary force or due to van der Waals interactions. The model shows a very good agreement with the experiments.
Similar articles
-
Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, insecta).
Jiao Y, Gorb S, Scherge M. Jiao Y, et al. J Exp Biol. 2000 Jun;203(Pt 12):1887-95. doi: 10.1242/jeb.203.12.1887. J Exp Biol. 2000. PMID: 10821745
-
Perez Goodwyn P, Peressadko A, Schwarz H, Kastner V, Gorb S. Perez Goodwyn P, et al. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Nov;192(11):1233-43. doi: 10.1007/s00359-006-0156-z. Epub 2006 Jul 26. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006. PMID: 16868765
-
A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures.
Schargott M. Schargott M. Bioinspir Biomim. 2009 Jun;4(2):026002. doi: 10.1088/1748-3182/4/2/026002. Epub 2009 Mar 10. Bioinspir Biomim. 2009. PMID: 19276511
-
Gaboriaud F, Dufrêne YF. Gaboriaud F, et al. Colloids Surf B Biointerfaces. 2007 Jan 15;54(1):10-9. doi: 10.1016/j.colsurfb.2006.09.014. Epub 2006 Sep 26. Colloids Surf B Biointerfaces. 2007. PMID: 17067786 Review.
-
Tree frog attachment: mechanisms, challenges, and perspectives.
Langowski JKA, Dodou D, Kamperman M, van Leeuwen JL. Langowski JKA, et al. Front Zool. 2018 Aug 23;15:32. doi: 10.1186/s12983-018-0273-x. eCollection 2018. Front Zool. 2018. PMID: 30154908 Free PMC article. Review.
Cited by
-
Effective Elastic Modulus of Structured Adhesives: From Biology to Biomimetics.
Wang X, Tan D, Zhang X, Lei Y, Xue L. Wang X, et al. Biomimetics (Basel). 2017 Jun 29;2(3):10. doi: 10.3390/biomimetics2030010. Biomimetics (Basel). 2017. PMID: 31105173 Free PMC article. Review.
-
Interaction of a non-axisymmetric artificial single spatula with rough surfaces.
Cheng Q, Jiang Z, Borodich FM, Gorb SN, Jin X. Cheng Q, et al. Interface Focus. 2024 Jun 7;14(3):20230081. doi: 10.1098/rsfs.2023.0081. eCollection 2024 Jun. Interface Focus. 2024. PMID: 39081624
-
Büscher TH, Gorb SN. Büscher TH, et al. Beilstein J Nanotechnol. 2021 Jul 15;12:725-743. doi: 10.3762/bjnano.12.57. eCollection 2021. Beilstein J Nanotechnol. 2021. PMID: 34354900 Free PMC article. Review.
-
Jiang Q, Wang L, Weng Z, Wang Z, Dai Z, Chen W. Jiang Q, et al. Biomimetics (Basel). 2022 Aug 26;7(3):119. doi: 10.3390/biomimetics7030119. Biomimetics (Basel). 2022. PMID: 36134923 Free PMC article.
-
Reversible Adhesive Bio-Toe with Hierarchical Structure Inspired by Gecko.
Wang L, Wang Z, Wang B, Yuan Q, Weng Z, Dai Z. Wang L, et al. Biomimetics (Basel). 2023 Jan 16;8(1):40. doi: 10.3390/biomimetics8010040. Biomimetics (Basel). 2023. PMID: 36648826 Free PMC article.