Endogenous pararetroviruses: two-faced travelers in the plant genome - PubMed
Review
. 2006 Oct;11(10):485-91.
doi: 10.1016/j.tplants.2006.08.008. Epub 2006 Sep 1.
Affiliations
- PMID: 16949329
- DOI: 10.1016/j.tplants.2006.08.008
Review
Endogenous pararetroviruses: two-faced travelers in the plant genome
Christina Staginnus et al. Trends Plant Sci. 2006 Oct.
Abstract
Endogenous plant pararetroviruses (EPRVs) were identified as integrated counterparts of most members of the plant virus family Caulimoviridae and represent repetitive elements that are ubiquitous in the plant kingdom. They are often located in pericentromeric regions of plant chromosomes in the vicinity of retrotransposon sequences. Depending on their structure and sequence integrity, some EPRVs are able to replicate and to initiate viral infection. However, conservation of integrated sequences in plant genomes might indicate benefits for the host during evolution. Understanding EPRV activation and control by the host could have important implications for plant breeding strategies to prevent viral disease caused by EPRVs in newly generated cultivars.
Similar articles
-
Euphyllophyte Paleoviruses Illuminate Hidden Diversity and Macroevolutionary Mode of Caulimoviridae.
Gong Z, Han GZ. Gong Z, et al. J Virol. 2018 Apr 27;92(10):e02043-17. doi: 10.1128/JVI.02043-17. Print 2018 May 15. J Virol. 2018. PMID: 29491164 Free PMC article.
-
The classification and nomenclature of endogenous viruses of the family Caulimoviridae.
Geering AD, Scharaschkin T, Teycheney PY. Geering AD, et al. Arch Virol. 2010;155(1):123-31. doi: 10.1007/s00705-009-0488-4. Epub 2009 Nov 8. Arch Virol. 2010. PMID: 19898772
-
Endogenous pararetroviruses--a reservoir of virus infection in plants.
Chabannes M, Iskra-Caruana ML. Chabannes M, et al. Curr Opin Virol. 2013 Dec;3(6):615-20. doi: 10.1016/j.coviro.2013.08.012. Epub 2013 Sep 12. Curr Opin Virol. 2013. PMID: 24035682 Review.
-
Suggestions for a nomenclature of endogenous pararetroviral sequences in plants.
Staginnus C, Iskra-Caruana ML, Lockhart B, Hohn T, Richert-Pöggeler KR. Staginnus C, et al. Arch Virol. 2009;154(7):1189-93. doi: 10.1007/s00705-009-0412-y. Epub 2009 Jun 12. Arch Virol. 2009. PMID: 19521659 No abstract available.
-
Give-and-take: interactions between DNA transposons and their host plant genomes.
Dooner HK, Weil CF. Dooner HK, et al. Curr Opin Genet Dev. 2007 Dec;17(6):486-92. doi: 10.1016/j.gde.2007.08.010. Epub 2007 Oct 4. Curr Opin Genet Dev. 2007. PMID: 17919898 Review.
Cited by
-
Eid S, Pappu HR. Eid S, et al. Virus Genes. 2014 Feb;48(1):153-9. doi: 10.1007/s11262-013-0998-8. Epub 2013 Nov 21. Virus Genes. 2014. PMID: 24258394
-
Gayral P, Noa-Carrazana JC, Lescot M, Lheureux F, Lockhart BE, Matsumoto T, Piffanelli P, Iskra-Caruana ML. Gayral P, et al. J Virol. 2008 Jul;82(13):6697-710. doi: 10.1128/JVI.00212-08. Epub 2008 Apr 16. J Virol. 2008. PMID: 18417582 Free PMC article.
-
The nature and organization of satellite DNAs in Petunia hybrida, related, and ancestral genomes.
Alisawi O, Richert-Pöggeler KR, Heslop-Harrison JSP, Schwarzacher T. Alisawi O, et al. Front Plant Sci. 2023 Oct 6;14:1232588. doi: 10.3389/fpls.2023.1232588. eCollection 2023. Front Plant Sci. 2023. PMID: 37868307 Free PMC article.
-
Genetic differences between Korean and American isolates of Petunia vein clearing virus.
Kwon YE, Song EG, Choi SH, Ryu KH. Kwon YE, et al. Virus Genes. 2020 Feb;56(1):78-86. doi: 10.1007/s11262-019-01711-w. Epub 2019 Nov 8. Virus Genes. 2020. PMID: 31705264
-
Known and New Emerging Viruses Infecting Blueberry.
Saad N, Olmstead JW, Jones JB, Varsani A, Harmon PF. Saad N, et al. Plants (Basel). 2021 Oct 14;10(10):2172. doi: 10.3390/plants10102172. Plants (Basel). 2021. PMID: 34685980 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources