Diversifying selection drives the evolution of the type III secretion system pilus of Pseudomonas syringae - PubMed
. 2006 Dec;23(12):2342-54.
doi: 10.1093/molbev/msl103. Epub 2006 Sep 1.
Affiliations
- PMID: 16950758
- DOI: 10.1093/molbev/msl103
Diversifying selection drives the evolution of the type III secretion system pilus of Pseudomonas syringae
David S Guttman et al. Mol Biol Evol. 2006 Dec.
Abstract
The plant pathogenic bacterium Pseudomonas syringae uses a type III secretion system to inject virulence proteins directly into the cytoplasm of its hosts. The P. syringae type III secretion apparatus is encoded, in part, by the HrpZ operon, which carries the hrpA gene encoding the pilin subunit of the pilus, various components of the structural apparatus, and the HrpZ harpin protein that is believed to produce pores in the host cell membrane. The pilus of the type III system comes into direct contact with the host cell and is, therefore, a likely target of the host's pathogen surveillance systems. We sequenced and analyzed 22 HrpZ operons from P. syringae strains spanning the diversity of the species. Selection analyses, including K(a)/K(s) tests and Tajima's D, revealed strong diversifying selection acting on the hrpA gene. This form of selection enables pathogens to maintain genetic diversity within their populations and is often driven by selection imposed by host defense systems. The HrpZ operon also revealed a single significant recombination event that dramatically changed the evolutionary relationships among P. syringae strains from 2 quite distinct phylogroups. This recombination event appears to have introduced genetic diversity into a clade of strains that may now be undergoing positive selection. The identification of diversifying selection acting on the Hrp pilus across the whole population sample and positive selection within one P. syringae lineage supports a trench warfare coevolutionary model between P. syringae and its plant hosts.
Similar articles
-
Brown IR, Mansfield JW, Taira S, Roine E, Romantschuk M. Brown IR, et al. Mol Plant Microbe Interact. 2001 Mar;14(3):394-404. doi: 10.1094/MPMI.2001.14.3.394. Mol Plant Microbe Interact. 2001. PMID: 11277437
-
Lindeberg M, Cartinhour S, Myers CR, Schechter LM, Schneider DJ, Collmer A. Lindeberg M, et al. Mol Plant Microbe Interact. 2006 Nov;19(11):1151-8. doi: 10.1094/MPMI-19-1151. Mol Plant Microbe Interact. 2006. PMID: 17073298 Review.
-
Wei CF, Deng WL, Huang HC. Wei CF, et al. Mol Microbiol. 2005 Jul;57(2):520-36. doi: 10.1111/j.1365-2958.2005.04704.x. Mol Microbiol. 2005. PMID: 15978082
-
The bacterial type III secretion system-associated pilin HrpA has an unusually long mRNA half-life.
Hienonen E, Rantakari A, Romantschuk M, Taira S. Hienonen E, et al. FEBS Lett. 2004 Jul 30;571(1-3):217-20. doi: 10.1016/j.febslet.2004.06.072. FEBS Lett. 2004. PMID: 15280045
-
The VirPphA/AvrPtoB family of type III effectors in Pseudomonas syringae.
Oguiza JA, Asensio AC. Oguiza JA, et al. Res Microbiol. 2005 Apr;156(3):298-303. doi: 10.1016/j.resmic.2004.10.017. Epub 2004 Dec 21. Res Microbiol. 2005. PMID: 15808932 Review.
Cited by
-
Demba Diallo M, Monteil CL, Vinatzer BA, Clarke CR, Glaux C, Guilbaud C, Desbiez C, Morris CE. Demba Diallo M, et al. ISME J. 2012 Jul;6(7):1325-35. doi: 10.1038/ismej.2011.202. Epub 2012 Jan 12. ISME J. 2012. PMID: 22237542 Free PMC article.
-
Pérez-Martínez I, Rodríguez-Moreno L, Lambertsen L, Matas IM, Murillo J, Tegli S, Jiménez AJ, Ramos C. Pérez-Martínez I, et al. Appl Environ Microbiol. 2010 Jun;76(11):3611-9. doi: 10.1128/AEM.00133-10. Epub 2010 Apr 2. Appl Environ Microbiol. 2010. PMID: 20363790 Free PMC article.
-
Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria.
Tampakaki AP. Tampakaki AP. Front Plant Sci. 2014 Mar 27;5:114. doi: 10.3389/fpls.2014.00114. eCollection 2014. Front Plant Sci. 2014. PMID: 24723933 Free PMC article. Review.
-
Pesce C, Jacobs JM, Berthelot E, Perret M, Vancheva T, Bragard C, Koebnik R. Pesce C, et al. Front Microbiol. 2017 Jun 26;8:1177. doi: 10.3389/fmicb.2017.01177. eCollection 2017. Front Microbiol. 2017. PMID: 28694803 Free PMC article.
-
Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens.
Stavrinides J, Ma W, Guttman DS. Stavrinides J, et al. PLoS Pathog. 2006 Oct;2(10):e104. doi: 10.1371/journal.ppat.0020104. PLoS Pathog. 2006. PMID: 17040127 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources