Testing untyped alleles (TUNA)-applications to genome-wide association studies - PubMed
Testing untyped alleles (TUNA)-applications to genome-wide association studies
Dan L Nicolae. Genet Epidemiol. 2006 Dec.
Abstract
The large number of tests performed in analyzing data from genome-wide association studies has a large impact on the power of detecting risk variants, and analytic strategies specifying the optimal set of hypotheses to be tested are necessary. We propose a genome-wide strategy that is based on one degree of freedom tests for all the genotyped variants, and for all the untyped variants for which there is sufficient information in the observed data. The set of untyped variants to be tested is found using multi-locus measures of linkage disequilibrium and haplotype frequencies from a reference database such as HapMap (The International HapMap Consortium [2003] Nature 426:789-796). We introduce a novel statistic for testing differences in allele frequencies for untyped variation that is based on linear combinations of estimable haplotype frequencies. Algorithms for finding the sets of genotyped markers to be used in testing an untyped allele, and ways of incorporating haplotypes observed in the study data but not in the reference database are also described. The proposed testing strategy can be used as the first step in the analysis of genome-wide association data, and, because every performed test is directed to a marker, it can be used to specify the set of polymorphisms to genotype in follow-up studies. The described methodology provides also a tool for joint analysis of data from studies done on different platforms.
Similar articles
-
Quantifying the amount of missing information in genetic association studies.
Nicolae DL. Nicolae DL. Genet Epidemiol. 2006 Dec;30(8):703-17. doi: 10.1002/gepi.20181. Genet Epidemiol. 2006. PMID: 16986163
-
Browning BL, Browning SR. Browning BL, et al. Genet Epidemiol. 2007 Jul;31(5):365-75. doi: 10.1002/gepi.20216. Genet Epidemiol. 2007. PMID: 17326099
-
Lin S, Chakravarti A, Cutler DJ. Lin S, et al. Nat Genet. 2004 Nov;36(11):1181-8. doi: 10.1038/ng1457. Epub 2004 Oct 24. Nat Genet. 2004. PMID: 15502828
-
Barnes MR. Barnes MR. Brief Bioinform. 2006 Sep;7(3):211-24. doi: 10.1093/bib/bbl021. Epub 2006 Jul 28. Brief Bioinform. 2006. PMID: 16877472 Review.
-
Software engineering the mixed model for genome-wide association studies on large samples.
Zhang Z, Buckler ES, Casstevens TM, Bradbury PJ. Zhang Z, et al. Brief Bioinform. 2009 Nov;10(6):664-75. doi: 10.1093/bib/bbp050. Brief Bioinform. 2009. PMID: 19933212 Review.
Cited by
-
ATRIUM: testing untyped SNPs in case-control association studies with related individuals.
Wang Z, McPeek MS. Wang Z, et al. Am J Hum Genet. 2009 Nov;85(5):667-78. doi: 10.1016/j.ajhg.2009.10.006. Am J Hum Genet. 2009. PMID: 19913122 Free PMC article.
-
Analysis of untyped SNPs: maximum likelihood and imputation methods.
Hu YJ, Lin DY. Hu YJ, et al. Genet Epidemiol. 2010 Dec;34(8):803-15. doi: 10.1002/gepi.20527. Genet Epidemiol. 2010. PMID: 21104886 Free PMC article.
-
Genetic epidemiology in aging research.
Fallin MD, Matteini A. Fallin MD, et al. J Gerontol A Biol Sci Med Sci. 2009 Jan;64(1):47-60. doi: 10.1093/gerona/gln021. Epub 2009 Jan 23. J Gerontol A Biol Sci Med Sci. 2009. PMID: 19168782 Free PMC article. Review.
-
A new genotype imputation method with tolerance to high missing rate and rare variants.
Yang Y, Wang Q, Chen Q, Liao R, Zhang X, Yang H, Zheng Y, Zhang Z, Pan Y. Yang Y, et al. PLoS One. 2014 Jun 27;9(6):e101025. doi: 10.1371/journal.pone.0101025. eCollection 2014. PLoS One. 2014. PMID: 24972110 Free PMC article.
-
Genotype imputation for genome-wide association studies.
Marchini J, Howie B. Marchini J, et al. Nat Rev Genet. 2010 Jul;11(7):499-511. doi: 10.1038/nrg2796. Nat Rev Genet. 2010. PMID: 20517342 Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials