Hyperthermophiles in the history of life - PubMed
- ️Sun Jan 01 2006
Hyperthermophiles in the history of life
Karl O Stetter. Philos Trans R Soc Lond B Biol Sci. 2006.
Abstract
Today, hyperthermophilic ('superheat-loving') bacteria and archaea are found within high-temperature environments, representing the upper temperature border of life. They grow optimally above 80 degrees C and exhibit an upper temperature border of growth up to 113 degrees C. Members of the genera, Pyrodictium and Pyrolobus, survive at least 1h of autoclaving. In their basically anaerobic environments, hyperthermophiles (HT) gain energy by inorganic redox reactions employing compounds like molecular hydrogen, carbon dioxide, sulphur and ferric and ferrous iron. Based on their growth requirements, HT could have existed already on the early Earth about 3.9Gyr ago. In agreement, within the phylogenetic tree of life, they occupy all the short deep branches closest to the root. The earliest archaeal phylogenetic lineage is represented by the extremely tiny members of the novel kingdom of Nanoarchaeota, which thrive in submarine hot vents. HT are very tough survivors, even in deep-freezing at -140 degrees C. Therefore, during impact ejecta, they could have been successfully transferred to other planets and moons through the coldness of space.
Figures

Small subunit ribosomal RNA-based phylogenetic tree. The thick lineages represent HT.

Schematic of main energy-yielding reactions in chemolithoautotrophic HT.

Krafla solfataric field (Iceland), 2 days before a volcanic fissure eruption. A huge fumarole throws up lumps of boiling mud that contained viable HT.

Antler-shaped cell of Thermoproteus, about 100 μm in length and 0.4 μm in diameter. Phase-contrast light micrograph.

Oil wells within the permafrost soil at Prudhoe Bay, North Alaska.

Sampling at the submarine hydrothermal vents at Porto di Levante, Vulcano (Italy). Hot water and gas escape from cracks within hot volcanic rocks.

Pyrodictium abyssi, disk-shaped cells within a network of ultrathin tubules. Scanning electron micrograph.

Sampling of hot rocks from a ‘Beehive Smoker’ at the Mid-Atlantic Ridge (TAG site; 21° N; depth approx. 4000 m).

Pyrolobus fumarii, lobed coccoid cell. Ultrathin section. Transmission electron micrograph. Scale bar, 0.5 μm.

Cells of N. equitans (small) attached to Ignicoccus strain Kin 4M (large). (a) Platinum-shadowing. (b) Freeze-etching. Transmission electron micrographs.
Similar articles
-
History of discovery of the first hyperthermophiles.
Stetter KO. Stetter KO. Extremophiles. 2006 Oct;10(5):357-62. doi: 10.1007/s00792-006-0012-7. Epub 2006 Aug 29. Extremophiles. 2006. PMID: 16941067 Review.
-
Extremophiles and their adaptation to hot environments.
Stetter KO. Stetter KO. FEBS Lett. 1999 Jun 4;452(1-2):22-5. doi: 10.1016/s0014-5793(99)00663-8. FEBS Lett. 1999. PMID: 10376671 Review.
-
Hyperthermophiles in the history of life.
Stetter KO. Stetter KO. Ciba Found Symp. 1996;202:1-10; discussion 11-8. Ciba Found Symp. 1996. PMID: 9243007 Review.
-
A brief history of the discovery of hyperthermophilic life.
Stetter KO. Stetter KO. Biochem Soc Trans. 2013 Feb 1;41(1):416-20. doi: 10.1042/BST20120284. Biochem Soc Trans. 2013. PMID: 23356321 Review.
-
Hyperthermophilic life at deep-sea hydrothermal vents.
Prieur D, Erauso G, Jeanthon C. Prieur D, et al. Planet Space Sci. 1995 Jan-Feb;43(1-2):115-22. doi: 10.1016/0032-0633(94)00143-f. Planet Space Sci. 1995. PMID: 11538423
Cited by
-
Quantitative Proteomic Analysis Revealed Broad Roles of N6-Methyladenosine in Heat Shock Response.
Miao W, Yang YY, Wang Y. Miao W, et al. J Proteome Res. 2021 Jul 2;20(7):3611-3620. doi: 10.1021/acs.jproteome.1c00191. Epub 2021 May 27. J Proteome Res. 2021. PMID: 34043365 Free PMC article.
-
Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways.
De Anda V, Chen LX, Dombrowski N, Hua ZS, Jiang HC, Banfield JF, Li WJ, Baker BJ. De Anda V, et al. Nat Commun. 2021 Apr 23;12(1):2404. doi: 10.1038/s41467-021-22736-6. Nat Commun. 2021. PMID: 33893309 Free PMC article.
-
Introduction: Conditions for the emergence of life on the early Earth.
Leach S, Smith IW, Cockell CS. Leach S, et al. Philos Trans R Soc Lond B Biol Sci. 2006 Oct 29;361(1474):1675-9. doi: 10.1098/rstb.2006.1895. Philos Trans R Soc Lond B Biol Sci. 2006. PMID: 17008208 Free PMC article. No abstract available.
-
Shape and evolution of thermostable protein structure.
Coleman RG, Sharp KA. Coleman RG, et al. Proteins. 2010 Feb 1;78(2):420-33. doi: 10.1002/prot.22558. Proteins. 2010. PMID: 19731381 Free PMC article.
-
Sakai HD, Kurosawa N. Sakai HD, et al. Extremophiles. 2016 Mar;20(2):207-14. doi: 10.1007/s00792-016-0815-0. Epub 2016 Feb 10. Extremophiles. 2016. PMID: 26860120
References
-
- Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch H.W, Stetter K.O. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles. 1997;1:14–21. doi:10.1007/s007920050010 - DOI - PubMed
-
- Brasier M.D, Green O.R, Jephcoat A.P, Kleppe A.K, Van Kranendonk M.J, Lindsay J.F, Steele A, Grassineau N.V. Questioning the evidence for Earth's oldest fossils. Nature. 2002;416:76–81. doi:10.1038/416076a - DOI - PubMed
-
- Brock T.D. Thermophilic microorganisms and life at high temperatures. vol. xi. Springer; New York, NY: 1978. 465 pp.
-
- Castenholz R.W. Evolution and ecology of thermophilic microorganisms. In: Shilo M, editor. Strategies of microbial life in extreme environments. Verlag Chemie; Weinheim, Germany: 1979. pp. 373–392.
-
- Cowan D.A. The upper limit of life: how far can we go. Trends Microbiol. 2004;12:58–60. doi:10.1016/j.tim.2003.12.002 - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources