The origin and emergence of life under impact bombardment - PubMed
- ️Sun Jan 01 2006
The origin and emergence of life under impact bombardment
Charles S Cockell. Philos Trans R Soc Lond B Biol Sci. 2006.
Abstract
Craters formed by asteroids and comets offer a number of possibilities as sites for prebiotic chemistry, and they invite a literal application of Darwin's 'warm little pond'. Some of these attributes, such as prolonged circulation of heated water, are found in deep-ocean hydrothermal vent systems, previously proposed as sites for prebiotic chemistry. However, impact craters host important characteristics in a single location, which include the formation of diverse metal sulphides, clays and zeolites as secondary hydrothermal minerals (which can act as templates or catalysts for prebiotic syntheses), fracturing of rock during impact (creating a large surface area for reactions), the delivery of iron in the case of the impact of iron-containing meteorites (which might itself act as a substrate for prebiotic reactions), diverse impact energies resulting in different rates of hydrothermal cooling and thus organic syntheses, and the indiscriminate nature of impacts into every available lithology-generating large numbers of 'experiments' in the origin of life. Following the evolution of life, craters provide cryptoendolithic and chasmoendolithic habitats, particularly in non-sedimentary lithologies, where limited pore space would otherwise restrict colonization. In impact melt sheets, shattered, mixed rocks ultimately provided diverse geochemical gradients, which in present-day craters support the growth of microbial communities.
Figures

Darwin's warm little pond—the impact crater as a prebiotic reactor. Some of the diversity of characteristics of impact structures that make them favourable sites for prebiotic reactions are shown.

Impact craters as a habitat. Some of the characteristics of impact craters that make them favourable sites for micro-organisms are shown.

Organisms associated with impact melt sheets (suevites) in the Haughton impact structure, Canada. (a) A biofilm of organisms associated with a cavity inside the material (scale bar 0.1 mm); (b) microfungi associated with the biofilms (scale bar 30 μm); (c) the diverse mineralogy of the breccia (granites, dolomite, gneiss, sandstones) provides a geochemically diverse environment for microorganisms (scale bar 0.3 mm)
Similar articles
-
The Role of Meteorite Impacts in the Origin of Life.
Osinski GR, Cockell CS, Pontefract A, Sapers HM. Osinski GR, et al. Astrobiology. 2020 Sep;20(9):1121-1149. doi: 10.1089/ast.2019.2203. Epub 2020 Sep 1. Astrobiology. 2020. PMID: 32876492 Free PMC article.
-
A symbiotic view of the origin of life at hydrothermal impact crater-lakes.
Chatterjee S. Chatterjee S. Phys Chem Chem Phys. 2016 Jul 27;18(30):20033-46. doi: 10.1039/c6cp00550k. Phys Chem Chem Phys. 2016. PMID: 27126878
-
Prebiotic synthesis at impact craters: the role of Fe-clays and iron meteorites.
Pastorek A , Hrnčířová J , Jankovič L , Nejdl L , Civiš S , Ivanek O , Shestivska V , KníŽek A , Kubelík P , Šponer J , Petera L , Křivková A , Cassone G , Vaculovičová M , Šponer JE , Ferus M . Pastorek A , et al. Chem Commun (Camb). 2019 Aug 29;55(71):10563-10566. doi: 10.1039/c9cc04627e. Chem Commun (Camb). 2019. PMID: 31417990
-
The role of cometary particle coalescence in chemical evolution.
Oberbeck VR, McKay CP, Scattergood TW, Carle GC, Valentin JR. Oberbeck VR, et al. Orig Life Evol Biosph. 1989;19(1):39-55. doi: 10.1007/BF01808286. Orig Life Evol Biosph. 1989. PMID: 11536611 Review.
-
Microbial Life in Impact Craters.
Cockell CS, Osinski G, Sapers H, Pontefract A, Parnell J. Cockell CS, et al. Curr Issues Mol Biol. 2020;38:75-102. doi: 10.21775/cimb.038.075. Epub 2020 Jan 22. Curr Issues Mol Biol. 2020. PMID: 31967577 Review.
Cited by
-
Equilibrium and non-equilibrium furanose selection in the ribose isomerisation network.
Dass AV, Georgelin T, Westall F, Foucher F, De Los Rios P, Busiello DM, Liang S, Piazza F. Dass AV, et al. Nat Commun. 2021 May 12;12(1):2749. doi: 10.1038/s41467-021-22818-5. Nat Commun. 2021. PMID: 33980850 Free PMC article.
-
Serpentinization: Connecting Geochemistry, Ancient Metabolism and Industrial Hydrogenation.
Preiner M, Xavier JC, Sousa FL, Zimorski V, Neubeck A, Lang SQ, Greenwell HC, Kleinermanns K, Tüysüz H, McCollom TM, Holm NG, Martin WF. Preiner M, et al. Life (Basel). 2018 Sep 22;8(4):41. doi: 10.3390/life8040041. Life (Basel). 2018. PMID: 30249016 Free PMC article. Review.
-
Conditions for the emergence of life on the early Earth: summary and reflections.
Jortner J. Jortner J. Philos Trans R Soc Lond B Biol Sci. 2006 Oct 29;361(1474):1877-91. doi: 10.1098/rstb.2006.1909. Philos Trans R Soc Lond B Biol Sci. 2006. PMID: 17008225 Free PMC article.
-
Schmieder M, Kring DA. Schmieder M, et al. Astrobiology. 2020 Jan;20(1):91-141. doi: 10.1089/ast.2019.2085. Epub 2019 Dec 27. Astrobiology. 2020. PMID: 31880475 Free PMC article.
-
Clays and the Origin of Life: The Experiments.
Kloprogge JTT, Hartman H. Kloprogge JTT, et al. Life (Basel). 2022 Feb 9;12(2):259. doi: 10.3390/life12020259. Life (Basel). 2022. PMID: 35207546 Free PMC article. Review.
References
-
- Abramov O, Kring D.A. Lunar and planetary science XXXV. LPI; Houston, TX: 2004. Impact-induced hydrothermal system at the Sudbury crater: duration, temperatures, mechanics, and biological implications (abs) no. 1697 (CD-ROM).
-
- Alain K, Zbinden M, Le Bris N, Lesongeur F, Querellou J, Gaill F, Cambon-Bonavita M.A. Early steps in microbial colonization processes at deep-sea hydrothermal vents. Environ. Microbiol. 2004;6:227–241. doi:10.1111/j.1462-2920.2003.00557.x - DOI - PubMed
-
- Ames D.E, Watkinson D.H, Parrish R.R. Dating of a regional hydrothermal system induced by the 1850 Ma Sudbury impact event. Geology. 1998;26:447–450. doi:10.1130/0091-7613(1998)026<0447:DOARHS>2.3.CO;2 - DOI
-
- Baross J.A, Hoffman S.E. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig. Life Evol. Biosph. 1985;15:327–345. doi:10.1007/BF01808177 - DOI
-
- Berndt M.E, Allen D.W, Seyfried W.E. Reduction of CO2 during serpentinization of olivine at 300°C and 500 bar. Geology. 1996;24:351–354. doi:10.1130/0091-7613(1996)024<0351:ROCDSO>2.3.CO;2 - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources