Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano - PubMed
- ️Sun Jan 01 2006
. 2006 Nov 30;444(7119):605-9.
doi: 10.1038/nature05254.
Affiliations
- PMID: 17136091
- DOI: 10.1038/nature05254
Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano
Claude Herzberg. Nature. 2006.
Abstract
There is uncertainty about whether the abundant tholeiitic lavas on Hawaii are the product of melt from peridotite or pyroxenite/eclogite rocks. Using a parameterization of melting experiments on peridotite with glass analyses from the Hawaii Scientific Deep Project 2 on Mauna Kea volcano, I show here that a small population of the core samples had fractionated from a peridotite-source primary magma. Most lavas, however, differentiated from magmas that were too deficient in CaO and enriched in NiO (ref. 2) to have formed from a peridotite source. For these, experiments indicate that they were produced by the melting of garnet pyroxenite, a lithology that had formed in a second stage by reaction of peridotite with partial melts of subducted oceanic crust. Samples in the Hawaiian core are therefore consistent with previous suggestions that pyroxenite occurs in a host peridotite, and both contribute to melt production. Primary magma compositions vary down the drill core, and these reveal evidence for temperature variations within the underlying mantle plume. Mauna Kea magmatism is represented in other Hawaiian volcanoes, and provides a key for a general understanding of melt production in lithologically heterogeneous mantle.
Similar articles
-
The chemical structure of the Hawaiian mantle plume.
Ren ZY, Ingle S, Takahashi E, Hirano N, Hirata T. Ren ZY, et al. Nature. 2005 Aug 11;436(7052):837-40. doi: 10.1038/nature03907. Nature. 2005. PMID: 16100780
-
An olivine-free mantle source of Hawaiian shield basalts.
Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK. Sobolev AV, et al. Nature. 2005 Mar 31;434(7033):590-7. doi: 10.1038/nature03411. Nature. 2005. PMID: 15800614
-
Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume.
Abouchami W, Hofmann AW, Galer SJ, Frey FA, Eisele J, Feigenson M. Abouchami W, et al. Nature. 2005 Apr 14;434(7035):851-6. doi: 10.1038/nature03402. Nature. 2005. PMID: 15829954
-
Origin of magmas in subduction zones: a review of experimental studies.
Kushiro I. Kushiro I. Proc Jpn Acad Ser B Phys Biol Sci. 2007 Feb;83(1):1-15. doi: 10.2183/pjab.83.1. Proc Jpn Acad Ser B Phys Biol Sci. 2007. PMID: 24019580 Free PMC article. Review.
-
Niu Y, Shi X, Li T, Wu S, Sun W, Zhu R. Niu Y, et al. Sci Bull (Beijing). 2017 Nov 15;62(21):1464-1472. doi: 10.1016/j.scib.2017.09.019. Epub 2017 Sep 27. Sci Bull (Beijing). 2017. PMID: 36659396 Review.
Cited by
-
Can we identify source lithology of basalt?
Yang ZF, Zhou JH. Yang ZF, et al. Sci Rep. 2013;3:1856. doi: 10.1038/srep01856. Sci Rep. 2013. PMID: 23676779 Free PMC article.
-
Petrological evidence for secular cooling in mantle plumes.
Herzberg C, Gazel E. Herzberg C, et al. Nature. 2009 Apr 2;458(7238):619-22. doi: 10.1038/nature07857. Nature. 2009. PMID: 19340079
-
Genesis of Hawaiian lavas by crystallization of picritic magma in the deep mantle.
Yang J, Wang C, Zhang J, Jin Z. Yang J, et al. Nat Commun. 2023 Mar 13;14(1):1382. doi: 10.1038/s41467-023-37072-0. Nat Commun. 2023. PMID: 36914642 Free PMC article.
-
The role of plume-lithosphere interaction in Hawaii-Emperor chain formation.
Xie S, Cao Z, Liu L, Yang D, Liu M, Li Y, Qi R. Xie S, et al. Nat Commun. 2024 Aug 3;15(1):6571. doi: 10.1038/s41467-024-51055-9. Nat Commun. 2024. PMID: 39095372 Free PMC article.
-
Non-mantle-plume process caused the initial spreading of the South China Sea.
Yu X, Liu Z. Yu X, et al. Sci Rep. 2020 May 22;10(1):8500. doi: 10.1038/s41598-020-65174-y. Sci Rep. 2020. PMID: 32444825 Free PMC article.
LinkOut - more resources
Full Text Sources