Selective defect of in vivo glycolysis in early Huntington's disease striatum - PubMed
- ️Mon Jan 01 2007
Selective defect of in vivo glycolysis in early Huntington's disease striatum
William J Powers et al. Proc Natl Acad Sci U S A. 2007.
Abstract
Activity of complexes II, III, and IV of the mitochondrial electron transport system (ETS) is reduced in postmortem Huntington's disease (HD) striatum, suggesting that reduced cerebral oxidative phosphorylation may be important in the pathogenesis of neuronal death. We investigated mitochondrial oxidative metabolism in vivo in the striatum of 20 participants with early, genetically proven HD and 15 age-matched normal controls by direct measurements of the molar ratio of cerebral oxygen metabolism to cerebral glucose metabolism (CMRO(2)/CMRglc) with positron emission tomography. There was a significant increase in striatal CMRO(2)/CMRglc in HD rather than the decrease characteristic of defects in mitochondrial oxidative metabolism (6.0 +/- 1.6 vs. 5.1 +/- 0.9, P = 0.04). CMRO(2) was not different from controls (126 +/- 37 vs. 134 +/- 31 micromol 100 g(-1) min(-1), P = 0.49), whereas CMRglc was decreased (21.6 +/- 6.1 vs. 26.4 +/- 4.6 micromol 100 g(-1) min(-1), P = 0.01). Striatal volume was decreased as well (13.9 +/- 3.5 vs. 17.6 +/- 2.0 ml, P = 0.001). Increased striatal CMRO(2)/CMRglc with unchanged CMRO(2) is inconsistent with a defect in mitochondrial oxidative phosphorylation due to reduced activity of the mitochondrial ETS. Because HD pathology was already manifest by striatal atrophy, deficient energy production due to a reduced activity of the mitochondrial ETS is not important in the mechanism of neuronal death in early HD. Because glycolytic metabolism is predominantly astrocytic, the selective reduction in striatal CMRglc raises the possibility that astrocyte dysfunction may be involved in the pathogenesis of HD.
Conflict of interest statement
The authors declare no conflict of interest.
Similar articles
-
Cerebral mitochondrial metabolism in early Parkinson's disease.
Powers WJ, Videen TO, Markham J, Black KJ, Golchin N, Perlmutter JS. Powers WJ, et al. J Cereb Blood Flow Metab. 2008 Oct;28(10):1754-60. doi: 10.1038/jcbfm.2008.63. Epub 2008 Jun 25. J Cereb Blood Flow Metab. 2008. PMID: 18575458 Free PMC article.
-
PET studies of cerebral metabolism in Parkinson disease.
Powers WJ. Powers WJ. J Bioenerg Biomembr. 2009 Dec;41(6):505-8. doi: 10.1007/s10863-009-9251-5. J Bioenerg Biomembr. 2009. PMID: 19904589
-
Samadi P, Boutet A, Rymar VV, Rawal K, Maheux J, Kvann JC, Tomaszewski M, Beaubien F, Cloutier JF, Levesque D, Sadikot AF. Samadi P, et al. Genes Brain Behav. 2013 Feb;12(1):108-24. doi: 10.1111/j.1601-183X.2012.00858.x. Epub 2012 Nov 21. Genes Brain Behav. 2013. PMID: 23006318
-
Mitochondria and Huntington's disease pathogenesis: insight from genetic and chemical models.
Browne SE. Browne SE. Ann N Y Acad Sci. 2008 Dec;1147:358-82. doi: 10.1196/annals.1427.018. Ann N Y Acad Sci. 2008. PMID: 19076457 Review.
-
Chen CM. Chen CM. Chang Gung Med J. 2011 Mar-Apr;34(2):135-52. Chang Gung Med J. 2011. PMID: 21539755 Review.
Cited by
-
Elevated arteriolar cerebral blood volume in prodromal Huntington's disease.
Hua J, Unschuld PG, Margolis RL, van Zijl PC, Ross CA. Hua J, et al. Mov Disord. 2014 Mar;29(3):396-401. doi: 10.1002/mds.25591. Epub 2013 Jul 11. Mov Disord. 2014. PMID: 23847161 Free PMC article.
-
R6/2 Huntington's disease mice develop early and progressive abnormal brain metabolism and seizures.
Cepeda-Prado E, Popp S, Khan U, Stefanov D, Rodríguez J, Menalled LB, Dow-Edwards D, Small SA, Moreno H. Cepeda-Prado E, et al. J Neurosci. 2012 May 9;32(19):6456-67. doi: 10.1523/JNEUROSCI.0388-12.2012. J Neurosci. 2012. PMID: 22573668 Free PMC article.
-
Inhibitors of metabolism rescue cell death in Huntington's disease models.
Varma H, Cheng R, Voisine C, Hart AC, Stockwell BR. Varma H, et al. Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14525-30. doi: 10.1073/pnas.0704482104. Epub 2007 Aug 28. Proc Natl Acad Sci U S A. 2007. PMID: 17726098 Free PMC article.
-
Mitochondrial functional alterations in relation to pathophysiology of Huntington's disease.
Pandey M, Mohanakumar KP, Usha R. Pandey M, et al. J Bioenerg Biomembr. 2010 Jun;42(3):217-26. doi: 10.1007/s10863-010-9288-5. J Bioenerg Biomembr. 2010. PMID: 20464463 Review.
-
Prospects for neuroprotective therapies in prodromal Huntington's disease.
Chandra A, Johri A, Beal MF. Chandra A, et al. Mov Disord. 2014 Mar;29(3):285-93. doi: 10.1002/mds.25835. Epub 2014 Feb 26. Mov Disord. 2014. PMID: 24573776 Free PMC article. Review.
References
-
- Anderson KE. Psychiatr Clin North Am. 2005;28:275–290. - PubMed
-
- Brennan WA, Jr, Bird ED, Aprille JR. J Neurochem. 1985;44:1948–1950. - PubMed
-
- Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH. Ann Neurol. 1996;39:385–389. - PubMed
-
- Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF. Ann Neurol. 1997;41:646–653. - PubMed
-
- Tabrizi SJ, Cleeter MW, Xuereb J, Taanman JW, Cooper JM, Schapira AH. Ann Neurol. 1999;45:25–32. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous