DNA stretching and extreme kinking in the nucleosome core - PubMed
- ️Mon Jan 01 2007
. 2007 May 11;368(4):1067-74.
doi: 10.1016/j.jmb.2007.02.062. Epub 2007 Mar 2.
Affiliations
- PMID: 17379244
- DOI: 10.1016/j.jmb.2007.02.062
DNA stretching and extreme kinking in the nucleosome core
Michelle S Ong et al. J Mol Biol. 2007.
Abstract
DNA stretching in chromatin may facilitate its compaction and influence site recognition by nuclear factors. In vivo, stretching has been estimated to occur at the equivalent of one to two base-pairs (bp) per nucleosome. We have determined the crystal structure of a nucleosome core particle containing 145 bp of DNA (NCP145). Compared to the structure with 147 bp, the NCP145 displays two incidences of stretching one to two double-helical turns from the particle dyad axis. The stretching illustrates clearly a mechanism for shifting DNA position by displacement of a single base-pair while maintaining nearly identical histone-DNA interactions. Increased DNA twist localized to a short section between adjacent histone-DNA binding sites advances the rotational setting, while a translational component involves DNA kinking at a flanking region that initiates elongation by unstacking bases. Furthermore, one stretched region of the NCP145 displays an extraordinary 55 degrees kink into the minor groove situated 1.5 double-helical turns from the particle dyad axis, a hot spot for gene insertion by HIV-integrase, which prefers highly distorted substrate. This suggests that nucleosome position and context within chromatin could promote extreme DNA kinking that may influence genomic processes.
Similar articles
-
Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution.
Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. Davey CA, et al. J Mol Biol. 2002 Jun 21;319(5):1097-113. doi: 10.1016/S0022-2836(02)00386-8. J Mol Biol. 2002. PMID: 12079350
-
Helical repeat of DNA in the nucleosome core particle.
Negri R, Buttinelli M, Panetta G, De Arcangelis V, Di Mauro E, Travers A. Negri R, et al. Biochem Soc Trans. 2000;28(4):373-6. Biochem Soc Trans. 2000. PMID: 10961922
-
DNA recognition and nucleosome organization.
Travers A, Drew H. Travers A, et al. Biopolymers. 1997;44(4):423-33. doi: 10.1002/(SICI)1097-0282(1997)44:4<423::AID-BIP6>3.0.CO;2-M. Biopolymers. 1997. PMID: 9782778 Review.
-
Structure of the nucleosome core particle at 8 A resolution.
Uberbacher EC, Bunick GJ. Uberbacher EC, et al. J Biomol Struct Dyn. 1989 Aug;7(1):1-18. doi: 10.1080/07391102.1989.10507747. J Biomol Struct Dyn. 1989. PMID: 2684220 Review.
Cited by
-
Oligonucleotide sequence motifs as nucleosome positioning signals.
Collings CK, Fernandez AG, Pitschka CG, Hawkins TB, Anderson JN. Collings CK, et al. PLoS One. 2010 Jun 3;5(6):e10933. doi: 10.1371/journal.pone.0010933. PLoS One. 2010. PMID: 20532171 Free PMC article.
-
DNA stretching in the nucleosome facilitates alkylation by an intercalating antitumour agent.
Davey GE, Wu B, Dong Y, Surana U, Davey CA. Davey GE, et al. Nucleic Acids Res. 2010 Apr;38(6):2081-8. doi: 10.1093/nar/gkp1174. Epub 2009 Dec 21. Nucleic Acids Res. 2010. PMID: 20026584 Free PMC article.
-
Working the kinks out of nucleosomal DNA.
Olson WK, Zhurkin VB. Olson WK, et al. Curr Opin Struct Biol. 2011 Jun;21(3):348-57. doi: 10.1016/j.sbi.2011.03.006. Epub 2011 Apr 7. Curr Opin Struct Biol. 2011. PMID: 21482100 Free PMC article. Review.
-
Viral peptide conjugates for metal-warhead delivery to chromatin.
Batchelor LK, De Falco L, Dyson PJ, Davey CA. Batchelor LK, et al. RSC Adv. 2024 Mar 14;14(13):8718-8725. doi: 10.1039/d4ra01617c. eCollection 2024 Mar 14. RSC Adv. 2024. PMID: 38495982 Free PMC article.
-
CENP-C directs a structural transition of CENP-A nucleosomes mainly through sliding of DNA gyres.
Falk SJ, Lee J, Sekulic N, Sennett MA, Lee TH, Black BE. Falk SJ, et al. Nat Struct Mol Biol. 2016 Mar;23(3):204-208. doi: 10.1038/nsmb.3175. Epub 2016 Feb 15. Nat Struct Mol Biol. 2016. PMID: 26878239 Free PMC article.