Enzyme promiscuity: mechanism and applications - PubMed
Review
Enzyme promiscuity: mechanism and applications
Karl Hult et al. Trends Biotechnol. 2007 May.
Abstract
Introductory courses in biochemistry teach that enzymes are specific for their substrates and the reactions they catalyze. Enzymes diverging from this statement are sometimes called promiscuous. It has been suggested that relaxed substrate and reaction specificities can have an important role in enzyme evolution; however, enzyme promiscuity also has an applied aspect. Enzyme condition promiscuity has, for a long time, been used to run reactions under conditions of low water activity that favor ester synthesis instead of hydrolysis. Together with enzyme substrate promiscuity, it is exploited in numerous synthetic applications, from the laboratory to industrial scale. Furthermore, enzyme catalytic promiscuity, where enzymes catalyze accidental or induced new reactions, has begun to be recognized as a valuable research and synthesis tool. Exploiting enzyme catalytic promiscuity might lead to improvements in existing catalysts and provide novel synthesis pathways that are currently not available.
Similar articles
-
Enzyme promiscuity: evolutionary and mechanistic aspects.
Khersonsky O, Roodveldt C, Tawfik DS. Khersonsky O, et al. Curr Opin Chem Biol. 2006 Oct;10(5):498-508. doi: 10.1016/j.cbpa.2006.08.011. Epub 2006 Aug 30. Curr Opin Chem Biol. 2006. PMID: 16939713 Review.
-
Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways.
Bornscheuer UT, Kazlauskas RJ. Bornscheuer UT, et al. Angew Chem Int Ed Engl. 2004 Nov 19;43(45):6032-40. doi: 10.1002/anie.200460416. Angew Chem Int Ed Engl. 2004. PMID: 15523680
-
Molecular signatures-based prediction of enzyme promiscuity.
Carbonell P, Faulon JL. Carbonell P, et al. Bioinformatics. 2010 Aug 15;26(16):2012-9. doi: 10.1093/bioinformatics/btq317. Epub 2010 Jun 15. Bioinformatics. 2010. PMID: 20551137
-
A quantitative index of substrate promiscuity.
Nath A, Atkins WM. Nath A, et al. Biochemistry. 2008 Jan 8;47(1):157-66. doi: 10.1021/bi701448p. Epub 2007 Dec 15. Biochemistry. 2008. PMID: 18081310
-
Evolution of enzyme superfamilies.
Glasner ME, Gerlt JA, Babbitt PC. Glasner ME, et al. Curr Opin Chem Biol. 2006 Oct;10(5):492-7. doi: 10.1016/j.cbpa.2006.08.012. Epub 2006 Aug 28. Curr Opin Chem Biol. 2006. PMID: 16935022 Review.
Cited by
-
Patrikainen P, Kallio P, Fan K, Klika KD, Shaaban KA, Mäntsälä P, Rohr J, Yang K, Niemi J, Metsä-Ketelä M. Patrikainen P, et al. Chem Biol. 2012 May 25;19(5):647-55. doi: 10.1016/j.chembiol.2012.04.010. Chem Biol. 2012. PMID: 22633416 Free PMC article.
-
Cui S, Zhang S, Wang N, Su X, Luo Z, Ma X, Li M. Cui S, et al. Nat Commun. 2024 Jul 30;15(1):6423. doi: 10.1038/s41467-024-50662-w. Nat Commun. 2024. PMID: 39080270 Free PMC article.
-
Positioning Bacillus subtilis as terpenoid cell factory.
Pramastya H, Song Y, Elfahmi EY, Sukrasno S, Quax WJ. Pramastya H, et al. J Appl Microbiol. 2021 Jun;130(6):1839-1856. doi: 10.1111/jam.14904. Epub 2020 Nov 20. J Appl Microbiol. 2021. PMID: 33098223 Free PMC article. Review.
-
Wilding M, Peat TS, Newman J, Scott C. Wilding M, et al. Appl Environ Microbiol. 2016 Jun 13;82(13):3846-3856. doi: 10.1128/AEM.00665-16. Print 2016 Jul 1. Appl Environ Microbiol. 2016. PMID: 27107110 Free PMC article.
-
Computational design of a lipase for catalysis of the Diels-Alder reaction.
Linder M, Hermansson A, Liebeschuetz J, Brinck T. Linder M, et al. J Mol Model. 2011 Apr;17(4):833-49. doi: 10.1007/s00894-010-0775-8. Epub 2010 Jun 24. J Mol Model. 2011. PMID: 20574696
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources