Real-SPINE: an integrated system of neural networks for real-value prediction of protein structural properties - PubMed
- ️Mon Jan 01 2007
. 2007 Jul 1;68(1):76-81.
doi: 10.1002/prot.21408.
Affiliations
- PMID: 17397056
- DOI: 10.1002/prot.21408
Real-SPINE: an integrated system of neural networks for real-value prediction of protein structural properties
Ofer Dor et al. Proteins. 2007.
Abstract
Proteins can move freely in three-dimensional space. As a result, their structural properties, such as solvent accessible surface area, backbone dihedral angles, and atomic distances, are continuous variables. However, these properties are often arbitrarily divided into a few classes to facilitate prediction by statistical learning techniques. In this work, we establish an integrated system of neural networks (called Real-SPINE) for real-value prediction and apply the method to predict residue-solvent accessibility and backbone psi dihedral angles of proteins based on information derived from sequences only. Real-SPINE is trained with a large data set of 2640 protein chains, sequence profiles generated from multiple sequence alignment, representative amino-acid properties, a slow learning rate, overfitting protection, and predicted secondary structures. The method optimizes more than 200,000 weights and yields a 10-fold cross-validated Pearson's correlation coefficient (PCC) of 0.74 between predicted and actual solvent accessible surface areas and 0.62 between predicted and actual psi angles. In particular, 90% of 2640 proteins have a PCC value greater than 0.6 between predicted and actual solvent-accessible surface areas. The results of Real-SPINE can be compared with the best reported correlation coefficients of 0.64-0.67 for solvent-accessible surface areas and 0.47 for psi angles. The real-SPINE server, executable programs, and datasets are freely available on http://sparks.informatics.iupui.edu.
2007 Wiley-Liss, Inc.
Similar articles
-
Dor O, Zhou Y. Dor O, et al. Proteins. 2007 Mar 1;66(4):838-45. doi: 10.1002/prot.21298. Proteins. 2007. PMID: 17177203
-
Garg A, Kaur H, Raghava GP. Garg A, et al. Proteins. 2005 Nov 1;61(2):318-24. doi: 10.1002/prot.20630. Proteins. 2005. PMID: 16106377
-
Real-value prediction of backbone torsion angles.
Xue B, Dor O, Faraggi E, Zhou Y. Xue B, et al. Proteins. 2008 Jul;72(1):427-33. doi: 10.1002/prot.21940. Proteins. 2008. PMID: 18214956
-
Accurate prediction of solvent accessibility using neural networks-based regression.
Adamczak R, Porollo A, Meller J. Adamczak R, et al. Proteins. 2004 Sep 1;56(4):753-67. doi: 10.1002/prot.20176. Proteins. 2004. PMID: 15281128
-
Wang JY, Lee HM, Ahmad S. Wang JY, et al. Proteins. 2007 Jul 1;68(1):82-91. doi: 10.1002/prot.21422. Proteins. 2007. PMID: 17436325
Cited by
-
Protein Solvent-Accessibility Prediction by a Stacked Deep Bidirectional Recurrent Neural Network.
Zhang B, Li L, Lü Q. Zhang B, et al. Biomolecules. 2018 May 25;8(2):33. doi: 10.3390/biom8020033. Biomolecules. 2018. PMID: 29799510 Free PMC article.
-
CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles.
Nielsen M, Lundegaard C, Lund O, Petersen TN. Nielsen M, et al. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W576-81. doi: 10.1093/nar/gkq535. Epub 2010 Jun 11. Nucleic Acids Res. 2010. PMID: 20542909 Free PMC article.
-
Ropka-Molik K, Stefaniuk-Szmukier M, Piórkowska K, Szmatoła T, Bugno-Poniewierska M. Ropka-Molik K, et al. BMC Vet Res. 2018 Aug 14;14(1):237. doi: 10.1186/s12917-018-1567-0. BMC Vet Res. 2018. PMID: 30107803 Free PMC article.
-
Zhang W, Liu S, Zhou Y. Zhang W, et al. PLoS One. 2008 Jun 4;3(6):e2325. doi: 10.1371/journal.pone.0002325. PLoS One. 2008. PMID: 18523556 Free PMC article.
-
Faraggi E, Kloczkowski A. Faraggi E, et al. Methods Mol Biol. 2015;1260:165-78. doi: 10.1007/978-1-4939-2239-0_10. Methods Mol Biol. 2015. PMID: 25502381 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials