LSD1 and the chemistry of histone demethylation - PubMed
Review
LSD1 and the chemistry of histone demethylation
Jeffrey C Culhane et al. Curr Opin Chem Biol. 2007 Oct.
Abstract
The recent discovery that histone demethylation can be catalyzed by the flavin-dependent amine oxidase LSD1 has ushered in a new chapter in the chromatin-remodeling community. Herein, we discuss the rapid progress of the histone demethylase field including the recent identification of the non-heme iron-dependent histone demethylases (JmjC family), the basis for LSD1 substrate site specificity and the newly emerging potential for inhibition of these enzymes in structural and functional analysis.
Figures

(a) The FAD dependent demethylation of Lys-4 of histone H3 proceeds through the hydrolysis of an iminium ion following a two electron oxidation of the amine by the flavin. R = ribosyl adenine dinucleotide (b) The iron(II) dependent demethylation of trimethyl-lysine substrates proceeds through an iron(II), α-ketoglutarate, and O2 derived hydroxyl radical oxidation of the methyl C-H bond.

(a) The proposed mechanism of inactivation of LSD1 by an N-methylpropargylamine containing H3 peptide proceeds through conjugate addition of the flavin N5 to the gamma carbon of the electrophile following a two electron oxidation to the iminium ion. (b) Reduction of the trimethine linkage of the FADinactivator conjugate with NaBH4 was necessary for crystallographic studies. (c) The proposed catalytic mechanism of inactivation of LSD1 by tranylcypromine proceeds through radical recombination and subsequent dehydration following a one electron oxidation and ring opening on the amine. R = ribosyl adenine dinucleotide in a-c

(a) Active site view of the key interactions between Asp-556 and Ala-1, the N-terminus of the H3 peptide, and both Trp-552 and Asp-556 with Arg-2 of the H3 peptide. (b) Active site view of the configuration of the three consecutive gamma turns that the H3 peptide backbone adopts between Arg-2 and Lys-4, Thr-3 and Gln-5, and Lys-4 and Thr-6. (c) Rendering of a H3 peptide containing three consecutive gamma turns to illustrate the pseudo 7-membered rings inferred by the i, i+2 backbone hydrogen bonding.
Similar articles
-
Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process.
Forneris F, Binda C, Vanoni MA, Mattevi A, Battaglioli E. Forneris F, et al. FEBS Lett. 2005 Apr 11;579(10):2203-7. doi: 10.1016/j.febslet.2005.03.015. FEBS Lett. 2005. PMID: 15811342
-
[Histone methylation and demethylation--focusing on demethylation--].
Tsukada Y. Tsukada Y. Seikagaku. 2007 Jul;79(7):691-7. Seikagaku. 2007. PMID: 17763704 Review. Japanese. No abstract available.
-
Structural basis of histone demethylation by LSD1 revealed by suicide inactivation.
Yang M, Culhane JC, Szewczuk LM, Gocke CB, Brautigam CA, Tomchick DR, Machius M, Cole PA, Yu H. Yang M, et al. Nat Struct Mol Biol. 2007 Jun;14(6):535-9. doi: 10.1038/nsmb1255. Epub 2007 May 27. Nat Struct Mol Biol. 2007. PMID: 17529991
-
Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression.
Wissmann M, Yin N, Müller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Günther T, Buettner R, Metzger E, Schüle R. Wissmann M, et al. Nat Cell Biol. 2007 Mar;9(3):347-53. doi: 10.1038/ncb1546. Epub 2007 Feb 4. Nat Cell Biol. 2007. PMID: 17277772
-
Current perspectives on histone demethylases.
Tian X, Fang J. Tian X, et al. Acta Biochim Biophys Sin (Shanghai). 2007 Feb;39(2):81-8. doi: 10.1111/j.1745-7270.2007.00272.x. Acta Biochim Biophys Sin (Shanghai). 2007. PMID: 17277881 Review.
Cited by
-
Epigenetic mechanisms facilitating oligodendrocyte development, maturation, and aging.
Copray S, Huynh JL, Sher F, Casaccia-Bonnefil P, Boddeke E. Copray S, et al. Glia. 2009 Nov 15;57(15):1579-87. doi: 10.1002/glia.20881. Glia. 2009. PMID: 19373939 Free PMC article. Review.
-
Liu D, Zempleni J. Liu D, et al. Genes Nutr. 2014 Sep;9(5):422. doi: 10.1007/s12263-014-0422-6. Epub 2014 Aug 8. Genes Nutr. 2014. PMID: 25103574 Free PMC article.
-
Structural insight into inhibitors of flavin adenine dinucleotide-dependent lysine demethylases.
Niwa H, Umehara T. Niwa H, et al. Epigenetics. 2017 May 4;12(5):340-352. doi: 10.1080/15592294.2017.1290032. Epub 2017 Feb 10. Epigenetics. 2017. PMID: 28277979 Free PMC article. Review.
-
Location, location, location: Beneficial effects of autologous fat transplantation.
Satoor SN, Puranik AS, Kumar S, Williams MD, Ghale M, Rahalkar A, Karandikar MS, Shouche Y, Patole M, Bhonde R, Yajnik CS, Hardikar AA. Satoor SN, et al. Sci Rep. 2011;1:81. doi: 10.1038/srep00081. Epub 2011 Sep 2. Sci Rep. 2011. PMID: 22355600 Free PMC article.
-
Mishra P, Beura S, Ghosh R, Modak R. Mishra P, et al. Subcell Biochem. 2022;100:239-267. doi: 10.1007/978-3-031-07634-3_8. Subcell Biochem. 2022. PMID: 36301497
References
-
- Paabo S. The human genome and our view of ourselves. Science. 2001;291:1219–1220. - PubMed
-
- Walsh CT. Posttranslational modification of proteins: expanding nature's inventory. B. Roberts; Colorado: 2005.
-
- Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–1080. - PubMed
-
- Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD. Tetrehymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996;84:843–851. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources