Language processing in the natural world - PubMed
- ️Tue Jan 01 2008
Review
Language processing in the natural world
Michael K Tanenhaus et al. Philos Trans R Soc Lond B Biol Sci. 2008.
Abstract
The authors argue that a more complete understanding of how people produce and comprehend language will require investigating real-time spoken-language processing in natural tasks, including those that require goal-oriented unscripted conversation. One promising methodology for such studies is monitoring eye movements as speakers and listeners perform natural tasks. Three lines of research that adopt this approach are reviewed: (i) spoken word recognition in continuous speech, (ii) reference resolution in real-world contexts, and (iii) real-time language processing in interactive conversation. In each domain, results emerge that provide insights which would otherwise be difficult to obtain. These results extend and, in some cases, challenge standard assumptions about language processing.
Figures

Shown are a sample display, simulations and data from Allopenna et al. (1998). (a) Sample display, (b) simulations of fixation proportions using TRACE and the linking hypothesis, and (c) the behavioural data. All figures are adapted from Allopenna et al. (1998).

Sample display and proportion of looks to (a) the cohort competitor (picture of a cat) and (b) embedded carrier word competitor (picture of a captain) in utterance medial and utterance final positions.

(a) Sample stimuli. The small cube will fit into both cans but the large cube will only fit into the big can. (b) The mean latency to launch an eye movement to the goal with definite and indefinite instructions and one and more than one compatible goal referents.

(a) Sample stimuli for (i) one-referent (pencil) and (ii) two-referent (apple on napkin) conditions. (b) The proportion of looks to the competitor goal (the towel) for instructions with locally ambiguous and unambiguous prepositional phrases in one-referent and two-referent contexts.

Sample stimuli for trials with (a) action-compatible competitor (two liquid eggs) and (b) action-incompatible competitor (one solid egg). (c) The mean proportion of time spent looking at the competitor goal (the empty bowl) for instructions with locally ambiguous and unambiguous prepositional phrases with action-compatible and action-incompatible competitors.

(a) Sample stimuli. Both whistles can be moved by hand, but only the whistle with the string attached can be picked up with a hook. (b) The proportion of time spent looking at the competitor goal when the presence or absence of an instrument makes the competitor action-compatible or action-incompatible.

Schematic of the setup used in the referential communication task. Shaded squares and rectangles represent blocks and unshaded squares and rectangles represent stickers (which will eventually be replaced with blocks). The scene pictured is midway through the task, so some portions of the partners' boards match, while other regions are not completed yet.

(a) The proportion of fixations to targets, competitors, and other blocks by time (ms) for linguistically disambiguated definite NPs. The graph is centred by item with 0 ms=POD onset. (b) The proportion of fixations for the linguistically ambiguous definite NPs.

Schematic of part of the game board for the ‘questions’ experiment from the perspective of one of the participants. The animals in grey squares are in that participants privileged ground. The animals in the white squares are in common ground, that is, visible to both participants. The black squares contain animals that are only visible to the participant's partner.

The proportion of referents for responses to questions, and declarative questions, categorized by mutuality of the referent, from the viewpoint of (a) the speaker and (b) the addressee.

The average proportion of fixations to privileged ground cards (addressee's perspective) during interpretation of wh-questions and declaratives. Baseline region=1000 ms before the onset of each expression+200 ms; Critical region=1000 ms after expression onset+200 ms.

Hypothetical context for utterance After putting the pencil below the big apple, James put the apple on top of the towel to illustrate the implausibility of standard assumptions about context-independent comprehension. Note that the small (red) apple is intended to be a more prototypical apple than the large (green) apple.
Similar articles
-
Speech perception with F0mod, a cochlear implant pitch coding strategy.
Francart T, Osses A, Wouters J. Francart T, et al. Int J Audiol. 2015 Jun;54(6):424-32. doi: 10.3109/14992027.2014.989455. Epub 2015 Feb 20. Int J Audiol. 2015. PMID: 25697275
-
Volume of left Heschl's Gyrus and linguistic pitch learning.
Wong PC, Warrier CM, Penhune VB, Roy AK, Sadehh A, Parrish TB, Zatorre RJ. Wong PC, et al. Cereb Cortex. 2008 Apr;18(4):828-36. doi: 10.1093/cercor/bhm115. Epub 2007 Jul 25. Cereb Cortex. 2008. PMID: 17652466 Free PMC article.
-
Gu F, Zhang C, Hu A, Zhao G. Gu F, et al. Neuroimage. 2013 Dec;83:637-45. doi: 10.1016/j.neuroimage.2013.02.080. Epub 2013 Jul 12. Neuroimage. 2013. PMID: 23856710
-
Influence of musical expertise and musical training on pitch processing in music and language.
Besson M, Schön D, Moreno S, Santos A, Magne C. Besson M, et al. Restor Neurol Neurosci. 2007;25(3-4):399-410. Restor Neurol Neurosci. 2007. PMID: 17943015 Review.
-
Eye movements as a window into real-time spoken language comprehension in natural contexts.
Eberhard KM, Spivey-Knowlton MJ, Sedivy JC, Tanenhaus MK. Eberhard KM, et al. J Psycholinguist Res. 1995 Nov;24(6):409-36. doi: 10.1007/BF02143160. J Psycholinguist Res. 1995. PMID: 8531168 Review.
Cited by
-
Landau AN, Aziz-Zadeh L, Ivry RB. Landau AN, et al. J Neurosci. 2010 Nov 10;30(45):15254-61. doi: 10.1523/JNEUROSCI.2046-10.2010. J Neurosci. 2010. PMID: 21068330 Free PMC article.
-
Rakhlin N, Kornilov SA, Kornilova TV, Grigorenko EL. Rakhlin N, et al. Lang Acquis. 2016;23(4):333-360. doi: 10.1080/10489223.2016.1179312. Epub 2016 May 16. Lang Acquis. 2016. PMID: 28626347 Free PMC article.
-
Self, others, objects: how this triadic interaction modulates our behavior.
Lugli L, Baroni G, Gianelli C, Borghi AM, Nicoletti R. Lugli L, et al. Mem Cognit. 2012 Nov;40(8):1373-86. doi: 10.3758/s13421-012-0218-0. Mem Cognit. 2012. PMID: 22618712
-
Dudschig C, Souman J, Lachmair M, de la Vega I, Kaup B. Dudschig C, et al. PLoS One. 2013;8(2):e56872. doi: 10.1371/journal.pone.0056872. Epub 2013 Feb 27. PLoS One. 2013. PMID: 23460816 Free PMC article.
-
Brown-Schmidt S, Gunlogson C, Tanenhaus MK. Brown-Schmidt S, et al. Cognition. 2008 Jun;107(3):1122-34. doi: 10.1016/j.cognition.2007.11.005. Epub 2007 Dec 31. Cognition. 2008. PMID: 18164700 Free PMC article.
References
-
- Allen J.F, Byron D.K, Dzikovska M, Ferguson G, Galescu L, Stent A. Towards conversational human–computer interaction. AI Mag. 2001;22:27–35.
-
- Allopenna P.D, Magnuson J.S, Tanenhaus M.K. Tracking the time course of spoken word recognition: evidence for continuous mapping models. J. Mem. Lang. 1998;38:419–439. doi:10.1006/jmla.1997.2558 - DOI
-
- Altmann G.T.M, Kamide Y. Incremental interpretation at verbs: restricting the domain of subsequent reference. Cognition. 1999;73:247–264. doi:10.1016/S0010-0277(99)00059-1 - DOI - PubMed
-
- Altmann G.T.M, Steedman M.J. Interaction with context during human sentence processing. Cognition. 1988;30:191–238. doi:10.1016/0010-0277(88)90020-0 - DOI - PubMed
-
- Austin J.L. Harvard University Press; Cambridge, MA: 1962. How to do things with words.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources