Reduced DTNBP1 (dysbindin-1) mRNA in the hippocampal formation of schizophrenia patients - PubMed
Reduced DTNBP1 (dysbindin-1) mRNA in the hippocampal formation of schizophrenia patients
Cynthia Shannon Weickert et al. Schizophr Res. 2008 Jan.
Abstract
Genetic and molecular studies indicate that dysbindin-1 plays a role in the pathophysiology of schizophrenia. We examined dysbindin-1 mRNA in the hippocampal formation of patients with schizophrenia and found reduced expression in dentate granule and polymorph cells and in hippocampal field CA3, but not in CA1. Furthermore, there were positive correlations between dysbindin-1 mRNA and expression of synaptic markers known to be reduced in schizophrenia. Our results indicate that previously reported dysbindin-1 protein reductions may be due in part to decreased dysbindin-1 mRNA and that reduced dysbindin-1 may contribute to hippocampal formation synaptic pathology in schizophrenia.
Figures

Autoradiographic film images of the hybridization of dysbindin-1 riboprobe in human hippocampal formation with the adjacent section from the same brain are shown (panels A &B). Panel A is taken shows the image from the antisense strand and panel B shows the image from the sense strand control.

Autoradiographic film images of the hybridization of dysbindin-1 riboprobe in human hippocampal formation are shown (panels A &B). Panel A is taken from a normal control and panel B from a patient with schizophrenia. The subregions at the midbody level of the hippocampal formation demonstrate different expression levels of dysbindin-1 mRNA. Note the intense hybridization signal in the CA3 and DGh subfields. A distinct but fairly thin line of dysbindin-1 mRNA label is found overlying the DGg (panel A & B). The CA1 region has a modest dysbindin-1 hybridization signal. Scale bar = 1 mm. Panel C: Bar graph shows the mean OD reading from dysbindin-1 mRNA signal expressed as ηCi/g radioactivity. Significant differences between controls (blue bars) and schizophrenia patients (red bars) mRNA are found in the DG (mean (SEM) =16.3(1.2), 12.2 (1.8), respectively, p=0.04), DGh (mean (SEM) = 16.6(2.0), 10.4(1.6), respectively; p=0.02), and CA3 (mean (SEM) = 24.3(3.9), 14.9(2.6), respectively; p=0.03) subregions. There were no significant changes between the groups for CA1 mRNA (mean (SEM) = 9.4(0.43), 8.4(0.58), respectively; p>0.05).
Similar articles
-
Weickert CS, Straub RE, McClintock BW, Matsumoto M, Hashimoto R, Hyde TM, Herman MM, Weinberger DR, Kleinman JE. Weickert CS, et al. Arch Gen Psychiatry. 2004 Jun;61(6):544-55. doi: 10.1001/archpsyc.61.6.544. Arch Gen Psychiatry. 2004. PMID: 15184234
-
Talbot K, Louneva N, Cohen JW, Kazi H, Blake DJ, Arnold SE. Talbot K, et al. PLoS One. 2011 Mar 1;6(3):e16886. doi: 10.1371/journal.pone.0016886. PLoS One. 2011. PMID: 21390302 Free PMC article.
-
Cell biology of the BLOC-1 complex subunit dysbindin, a schizophrenia susceptibility gene.
Mullin AP, Gokhale A, Larimore J, Faundez V. Mullin AP, et al. Mol Neurobiol. 2011 Aug;44(1):53-64. doi: 10.1007/s12035-011-8183-3. Epub 2011 Apr 26. Mol Neurobiol. 2011. PMID: 21520000 Free PMC article. Review.
-
[Advances in the studies of the dysbindin gene in schizophrenia].
Zhao GF, Deng H, Yang YC, Chen Y. Zhao GF, et al. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2009 Apr;26(2):175-8. doi: 10.3760/cma.j.issn.1003-9406.2009.02.012. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2009. PMID: 19350510 Review. Chinese.
Cited by
-
Mutant mouse models: genotype-phenotype relationships to negative symptoms in schizophrenia.
O'Tuathaigh CM, Kirby BP, Moran PM, Waddington JL. O'Tuathaigh CM, et al. Schizophr Bull. 2010 Mar;36(2):271-88. doi: 10.1093/schbul/sbp125. Epub 2009 Nov 24. Schizophr Bull. 2010. PMID: 19934211 Free PMC article.
-
Karlsgodt KH, Robleto K, Trantham-Davidson H, Jairl C, Cannon TD, Lavin A, Jentsch JD. Karlsgodt KH, et al. Biol Psychiatry. 2011 Jan 1;69(1):28-34. doi: 10.1016/j.biopsych.2010.09.012. Epub 2010 Oct 30. Biol Psychiatry. 2011. PMID: 21035792 Free PMC article.
-
Tang J, LeGros RP, Louneva N, Yeh L, Cohen JW, Hahn CG, Blake DJ, Arnold SE, Talbot K. Tang J, et al. Hum Mol Genet. 2009 Oct 15;18(20):3851-63. doi: 10.1093/hmg/ddp329. Epub 2009 Jul 19. Hum Mol Genet. 2009. PMID: 19617633 Free PMC article.
-
Orozco IJ, Koppensteiner P, Ninan I, Arancio O. Orozco IJ, et al. Mol Cell Neurosci. 2014 Jan;58:76-84. doi: 10.1016/j.mcn.2013.12.003. Epub 2013 Dec 7. Mol Cell Neurosci. 2014. PMID: 24321452 Free PMC article.
-
Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, Winiger E, Breier A, Shekhar A, Amdur R, Koller D, Nurnberger JI, Corvin A, Geyer M, Tsuang MT, Salomon D, Schork NJ, Fanous AH, O'Donovan MC, Niculescu AB. Ayalew M, et al. Mol Psychiatry. 2012 Sep;17(9):887-905. doi: 10.1038/mp.2012.37. Epub 2012 May 15. Mol Psychiatry. 2012. PMID: 22584867 Free PMC article.
References
-
- Bray NJ, Buckland PR, Owen MJ, O’Donovan MC. Cis-acting variation in the expression of a high proportion of gene in human brain. Human Genet. 2003;113:149–153. - PubMed
-
- Bray NJ, Preece A, Williams NM, Moskvina V, Buckland PR, Owen MJ, O’Donovan MC. Haplotypes at the dystrobrevin binding protein 1 (DTNBP1) gene locus mediate risk for schizophrenia through reduced DTNBP1 expression. Hum Mol Genet. 2005;14:1947–54. - PubMed
-
- Chiba S, Hashimoto R, Hattori S, Yohda M, Lipska B, Weinberger DR, Kunugi H. Effect of antipsychotic drugs on DISC1 and dysbindin expression in mouse frontal cortex and hippocampus. J Neural Transm. 2006;113:1337–46. - PubMed
-
- Eastwood SL, Burnet PW, McDonald B, Clinton J, Harrison PJ. Synaptophysin gene expression in human brain: a quantitative in situ hybridization and immunocytochemical study. Neuroscience. 1994;59:881–92. - PubMed
-
- Harrison PJ. The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 2004;174:151–62. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous