Individualized prediction of colon cancer recurrence using a nomogram - PubMed
- ️Tue Jan 01 2008
. 2008 Jan 20;26(3):380-5.
doi: 10.1200/JCO.2007.14.1291.
Ron G Landmann, Michael W Kattan, Mithat Gonen, Jinru Shia, Joanne Chou, Philip B Paty, José G Guillem, Larissa K Temple, Deborah Schrag, Leonard B Saltz, W Douglas Wong
Affiliations
- PMID: 18202413
- DOI: 10.1200/JCO.2007.14.1291
Individualized prediction of colon cancer recurrence using a nomogram
Martin R Weiser et al. J Clin Oncol. 2008.
Abstract
Purpose: Estimates of recurrence after curative colon cancer surgery are integral to patient care, forming the basis of cancer staging and treatment planning. The categoric staging system of the American Joint Committee on Cancer (AJCC) is commonly used to convey risk by grouping patients based on anatomic elements. Although easy to implement, there remains significant heterogeneity within each stage grouping. In the era of multimodality treatment, a more refined tool is needed to predict recurrence.
Methods: An institutional database of 1,320 patients with nonmetastatic colon cancer was used to develop a nomogram to estimate recurrence after curative surgery. Prognostic factors were assessed with multivariable analysis using Cox regression, whereas nonlinear continuous variables were modeled with cubic splines. The model was internally validated with bootstrapping, and performance was assessed by concordance index and a calibration curve.
Results: The colon cancer recurrence nomogram predicted relapse with a concordance index of 0.77, improving on the stratification provided by either the AJCC fifth or sixth staging scheme. Factors in the model included patient age, tumor location, preoperative carcinoembryonic antigen, T stage, numbers of positive and negative lymph nodes, lymphovascular invasion, perineural invasion, and use of postoperative chemotherapy.
Conclusion: Using common clinicopathologic factors, the recurrence nomogram is better able to account for tumor and patient heterogeneity, thereby providing a more individualized outcome prognostication than that afforded by the AJCC categoric system. By identifying both the high- and low-risk patients within any particular stage, the nomogram is expected to aid in treatment planning and future trial design.
Similar articles
-
Karakiewicz PI, Shariat SF, Palapattu GS, Gilad AE, Lotan Y, Rogers CG, Vazina A, Gupta A, Bastian PJ, Perrotte P, Sagalowsky AI, Schoenberg M, Lerner SP. Karakiewicz PI, et al. J Urol. 2006 Oct;176(4 Pt 1):1354-61; discussion 1361-2. doi: 10.1016/j.juro.2006.06.025. J Urol. 2006. PMID: 16952631
-
Nomograms provide improved accuracy for predicting survival after radical cystectomy.
Shariat SF, Karakiewicz PI, Palapattu GS, Amiel GE, Lotan Y, Rogers CG, Vazina A, Bastian PJ, Gupta A, Sagalowsky AI, Schoenberg M, Lerner SP. Shariat SF, et al. Clin Cancer Res. 2006 Nov 15;12(22):6663-76. doi: 10.1158/1078-0432.CCR-06-0372. Clin Cancer Res. 2006. PMID: 17121885
-
Wong SL, Kattan MW, McMasters KM, Coit DG. Wong SL, et al. Ann Surg Oncol. 2005 Apr;12(4):282-8. doi: 10.1245/ASO.2005.05.016. Epub 2005 Mar 14. Ann Surg Oncol. 2005. PMID: 15827679 Clinical Trial.
-
Shariat SF, Margulis V, Lotan Y, Montorsi F, Karakiewicz PI. Shariat SF, et al. Eur Urol. 2008 Jul;54(1):41-53. doi: 10.1016/j.eururo.2008.01.004. Epub 2008 Jan 15. Eur Urol. 2008. PMID: 18207314 Review.
-
Predictive models and prostate cancer.
Karakiewicz PI, Hutterer GC. Karakiewicz PI, et al. Nat Clin Pract Urol. 2008 Feb;5(2):82-92. doi: 10.1038/ncpuro0972. Nat Clin Pract Urol. 2008. PMID: 18259186 Review.
Cited by
-
Iasonos A, Keung EZ, Zivanovic O, Mancari R, Peiretti M, Nucci M, George S, Colombo N, Carinelli S, Hensley ML, Raut CP. Iasonos A, et al. Cancer. 2013 May 15;119(10):1816-22. doi: 10.1002/cncr.27971. Epub 2013 Mar 1. Cancer. 2013. PMID: 23456762 Free PMC article.
-
Ogino S, Nosho K, Irahara N, Shima K, Baba Y, Kirkner GJ, Meyerhardt JA, Fuchs CS. Ogino S, et al. J Clin Oncol. 2009 Sep 20;27(27):4591-8. doi: 10.1200/JCO.2009.22.8858. Epub 2009 Aug 24. J Clin Oncol. 2009. PMID: 19704056 Free PMC article.
-
Ren J, Xu L, Zhou S, Ouyang J, You W, Sheng N, Yan L, Peng D, Xie L, Wang Z. Ren J, et al. Front Oncol. 2021 Dec 3;11:776997. doi: 10.3389/fonc.2021.776997. eCollection 2021. Front Oncol. 2021. PMID: 34926285 Free PMC article.
-
Song X, Wang P, Feng R, Chetry M, Li E, Wu X, Liu Z, Liao S, Lin J. Song X, et al. Clin Transl Oncol. 2024 Feb;26(2):389-397. doi: 10.1007/s12094-023-03316-0. Epub 2023 Sep 15. Clin Transl Oncol. 2024. PMID: 37713046
-
Li J, Huang L, Liao C, Liu G, Tian Y, Chen S. Li J, et al. BMC Cancer. 2023 Jun 9;23(1):529. doi: 10.1186/s12885-023-10893-4. BMC Cancer. 2023. PMID: 37296397 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources