Genetic basis of fitness differences in natural populations - PubMed
- ️Tue Jan 01 2008
Review
. 2008 Mar 13;452(7184):169-75.
doi: 10.1038/nature06737.
Affiliations
- PMID: 18337813
- DOI: 10.1038/nature06737
Review
Genetic basis of fitness differences in natural populations
Hans Ellegren et al. Nature. 2008.
Abstract
Genomics profoundly influences current biology. One of many exciting consequences of this revolution is the potential for identifying and studying the genetic basis of those traits affecting fitness that are key to natural selection. Recent studies using a multitude of genomic approaches have established such genotype-phenotype relationships in natural populations, giving new insight into the genetic architecture of quantitative variation. In parallel, an emerging understanding of the quantitative genetics of fitness variation in the wild means that we are poised to see a synthesis of ecological and molecular approaches in evolutionary biology.
Similar articles
-
Coltman DW. Coltman DW. Mol Ecol. 2008 Jan;17(1):221-35. doi: 10.1111/j.1365-294X.2007.03414.x. Mol Ecol. 2008. PMID: 18173501 Review.
-
Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology.
Dalziel AC, Rogers SM, Schulte PM. Dalziel AC, et al. Mol Ecol. 2009 Dec;18(24):4997-5017. doi: 10.1111/j.1365-294X.2009.04427.x. Epub 2009 Nov 11. Mol Ecol. 2009. PMID: 19912534 Review.
-
Krutovskiĭ KV. Krutovskiĭ KV. Genetika. 2006 Oct;42(10):1304-18. Genetika. 2006. PMID: 17152702 Review. Russian.
-
Sexually antagonistic genetic variation for fitness in red deer.
Foerster K, Coulson T, Sheldon BC, Pemberton JM, Clutton-Brock TH, Kruuk LE. Foerster K, et al. Nature. 2007 Jun 28;447(7148):1107-10. doi: 10.1038/nature05912. Nature. 2007. PMID: 17597758
-
Evidence for a genetic basis of aging in two wild vertebrate populations.
Wilson AJ, Nussey DH, Pemberton JM, Pilkington JG, Morris A, Pelletier F, Clutton-Brock TH, Kruuk LE. Wilson AJ, et al. Curr Biol. 2007 Dec 18;17(24):2136-42. doi: 10.1016/j.cub.2007.11.043. Curr Biol. 2007. PMID: 18083516
Cited by
-
Measuring natural selection on genotypes and phenotypes in the wild.
Linnen CR, Hoekstra HE. Linnen CR, et al. Cold Spring Harb Symp Quant Biol. 2009;74:155-68. doi: 10.1101/sqb.2009.74.045. Epub 2010 Apr 22. Cold Spring Harb Symp Quant Biol. 2009. PMID: 20413707 Free PMC article. Review.
-
Heritability of Horn Size in Thinhorn Sheep.
Sim Z, Coltman DW. Sim Z, et al. Front Genet. 2019 Oct 11;10:959. doi: 10.3389/fgene.2019.00959. eCollection 2019. Front Genet. 2019. PMID: 31681413 Free PMC article.
-
Mukherjee D, Saha D, Acharya D, Mukherjee A, Ghosh TC. Mukherjee D, et al. Physiol Mol Biol Plants. 2022 May;28(5):1091-1108. doi: 10.1007/s12298-022-01188-2. Epub 2022 Jun 2. Physiol Mol Biol Plants. 2022. PMID: 35722515 Free PMC article.
-
Population genomics of the inbred Scandinavian wolf.
Hagenblad J, Olsson M, Parker HG, Ostrander EA, Ellegren H. Hagenblad J, et al. Mol Ecol. 2009 Apr;18(7):1341-51. doi: 10.1111/j.1365-294X.2009.04120.x. Mol Ecol. 2009. PMID: 19368642 Free PMC article.
-
Using Mendelian inheritance to improve high-throughput SNP discovery.
Chen N, Van Hout CV, Gottipati S, Clark AG. Chen N, et al. Genetics. 2014 Nov;198(3):847-57. doi: 10.1534/genetics.114.169052. Epub 2014 Sep 5. Genetics. 2014. PMID: 25194160 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources