Protein disorder prediction at multiple levels of sensitivity and specificity - PubMed
- ️Invalid Date
Comparative Study
Protein disorder prediction at multiple levels of sensitivity and specificity
Joshua Hecker et al. BMC Genomics. 2008.
Abstract
Background: Many protein regions and some entire proteins have no definite tertiary structure, existing instead as dynamic, disorder ensembles under different physiochemical circumstances. Identification of these protein disorder regions is important for protein production, protein structure prediction and determination, and protein function annotation. A number of different disorder prediction software and web services have been developed since the first predictor was designed by Dunker's lab in 1997. However, most of the software packages use a pre-defined threshold to select ordered or disordered residues. In many situations, users need to choose ordered or disordered residues at different sensitivity and specificity levels.
Results: Here we benchmark a state of the art disorder predictor, DISpro, on a large protein disorder dataset created from Protein Data Bank and systematically evaluate the relationship of sensitivity and specificity. Also, we extend its functionality to allow users to trade off specificity and sensitivity by setting different decision thresholds. Moreover, we compare DISpro with seven other automated disorder predictors on the 95 protein targets used in the seventh edition of Critical Assessment of Techniques for Protein Structure Prediction (CASP7). DISpro is ranked as one of the best predictors.
Conclusion: The evaluation and extension of DISpro make it a more valuable and useful tool for structural and functional genomics.
Figures
![Figure 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2032/2386074/1565e4c03861/1471-2164-9-S1-S9-1.gif)
Sensitivity and specificity over a varying decision threshold from 0.01 to 0.99, in steps of 0.01.
![Figure 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2032/2386074/cdad56874d2d/1471-2164-9-S1-S9-2.gif)
Sensitivity vs. specificity over varying threshold
![Figure 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2032/2386074/04047871110c/1471-2164-9-S1-S9-3.gif)
Example output from modified DISpro. Displays probability of disorder for each residue in a sequence.
![Figure 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2032/2386074/1aa7da0b257c/1471-2164-9-S1-S9-4.gif)
ROC curves of eight predictors on the CASP7 dataset consisted of 95 protein targets.
![Figure 5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2032/2386074/28c368e52090/1471-2164-9-S1-S9-5.gif)
Frequency of lengths of disordered regions.
Similar articles
-
Zhang T, Faraggi E, Xue B, Dunker AK, Uversky VN, Zhou Y. Zhang T, et al. J Biomol Struct Dyn. 2012;29(4):799-813. doi: 10.1080/073911012010525022. J Biomol Struct Dyn. 2012. PMID: 22208280 Free PMC article.
-
PreDisorder: ab initio sequence-based prediction of protein disordered regions.
Deng X, Eickholt J, Cheng J. Deng X, et al. BMC Bioinformatics. 2009 Dec 21;10:436. doi: 10.1186/1471-2105-10-436. BMC Bioinformatics. 2009. PMID: 20025768 Free PMC article.
-
Assessment of disorder predictions in CASP7.
Bordoli L, Kiefer F, Schwede T. Bordoli L, et al. Proteins. 2007;69 Suppl 8:129-36. doi: 10.1002/prot.21671. Proteins. 2007. PMID: 17680688
-
Prediction and analysis of intrinsically disordered proteins.
Punta M, Simon I, Dosztányi Z. Punta M, et al. Methods Mol Biol. 2015;1261:35-59. doi: 10.1007/978-1-4939-2230-7_3. Methods Mol Biol. 2015. PMID: 25502193 Review.
-
Hsu CC, Buehler MJ, Tarakanova A. Hsu CC, et al. Sci Rep. 2020 Feb 7;10(1):2068. doi: 10.1038/s41598-020-58868-w. Sci Rep. 2020. PMID: 32034199 Free PMC article. Review.
Cited by
-
Zhang T, Faraggi E, Xue B, Dunker AK, Uversky VN, Zhou Y. Zhang T, et al. J Biomol Struct Dyn. 2012;29(4):799-813. doi: 10.1080/073911012010525022. J Biomol Struct Dyn. 2012. PMID: 22208280 Free PMC article.
-
Intrinsically semi-disordered state and its role in induced folding and protein aggregation.
Zhang T, Faraggi E, Li Z, Zhou Y. Zhang T, et al. Cell Biochem Biophys. 2013;67(3):1193-205. doi: 10.1007/s12013-013-9638-0. Cell Biochem Biophys. 2013. PMID: 23723000 Free PMC article.
-
Intrinsic Disorder-Based Design of Stable Globular Proteins.
Nagibina GS, Glukhova KA, Uversky VN, Melnik TN, Melnik BS. Nagibina GS, et al. Biomolecules. 2019 Dec 30;10(1):64. doi: 10.3390/biom10010064. Biomolecules. 2019. PMID: 31906016 Free PMC article.
-
In-silico prediction of disorder content using hybrid sequence representation.
Mizianty MJ, Zhang T, Xue B, Zhou Y, Dunker AK, Uversky VN, Kurgan L. Mizianty MJ, et al. BMC Bioinformatics. 2011 Jun 17;12:245. doi: 10.1186/1471-2105-12-245. BMC Bioinformatics. 2011. PMID: 21682902 Free PMC article.
-
Comprehensive review of methods for prediction of intrinsic disorder and its molecular functions.
Meng F, Uversky VN, Kurgan L. Meng F, et al. Cell Mol Life Sci. 2017 Sep;74(17):3069-3090. doi: 10.1007/s00018-017-2555-4. Epub 2017 Jun 6. Cell Mol Life Sci. 2017. PMID: 28589442 Free PMC article. Review.
References
-
- Cheng J., Sweredoski M.J., Baldi P. Accurate prediction of protein disordered regions by mining protein structure data. Data Mining and Knowledge Discovery. 2005;11:213–222. doi: 10.1007/s10618-005-0001-y. - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous