pubmed.ncbi.nlm.nih.gov

Synthesis of 5,15-diaryltetrabenzoporphyrins - PubMed

  • ️Tue Jan 01 2008

. 2008 Jun 6;73(11):4175-85.

doi: 10.1021/jo800509k. Epub 2008 May 2.

Affiliations

Synthesis of 5,15-diaryltetrabenzoporphyrins

Mikhail A Filatov et al. J Org Chem. 2008.

Abstract

A general method of synthesis of 5,15-diaryltetrabenzoporphyrins (Ar 2TBPs) has been developed, based on 2 + 2 condensation of dipyrromethanes followed by oxidative aromatization. Two pathways to Ar 2TBPs were investigated: the tetrahydroisoindole pathway and the dihydroisoindole pathway. In the tetrahydroisoindole pathway, precursor 5,15-diaryltetracyclohexenoporphyrins (5,15-Ar 2TCHPs) were assembled from cyclohexeno-fused meso-unsubstituted dipyrromethanes and aromatic aldehydes or, alternatively, by way of the classical MacDonald synthesis. In the first case, scrambling was observed. Aromatization by tetracyclone was more effective than aromatization by DDQ but failed in the cases of porphyrins with electron-withdrawing substituents in the meso-aryl rings. The dihydroisoindole pathway was found to be much superior to the tetrahydroisoindole pathway, and it was developed into a general preparative method, consisting of (1) the synthesis of 4,7-dihydroisoindole and its transformation into meso-unsubstituted dipyrromethanes, (2) the synthesis of 5,15-diaryloctahydrotetrabenzoporphyrins (5,15-Ar 2OHTBPs), and (3) their subsequent aromatization by DDQ. Ar 2TBP free bases exhibit optical absorption spectra similar to those of meso-unsubstituted tetrabenzoporphyrins and fluoresce with high quantum yields. Pd complex of Ph 2TBP was found to be highly phosphorescent at room temperature.

PubMed Disclaimer

Figures

CHART 1
CHART 1

5,15-Diaryltetrabenzoporphyrin (Ar2TBP)

FIGURE 1
FIGURE 1

Absorption and emission (insets) spectra of 8a (A) in toluene and of Pd-8a (B) in Ar-purged dimethylacetamide at 23 °C. A (inset): fluorescence, λex = 571 nm, φfluo = 0.38. B (inset): phosphorescence, λex = 610 nm, φphos = 0.19.

FIGURE 2
FIGURE 2

Fluorescence of 8a induced by two-photon absorption at 840 nm (110 fs, 76 MHz rep. rate) and its dependence on the incident laser power (inset). The data points (integrated fluorescence intensity (I) versus excitation power (P)) were fitted to a quadratic function I(P) = aP2 (solid line).

SCHEME 1
SCHEME 1

Approaches to Ar2TCHPs

SCHEME 2
SCHEME 2

Synthesis of Ar2TCHPs 4a-e Following Route A (Scheme 1)

SCHEME 3
SCHEME 3

Synthesis of Ar2TCHPs 4a-c from 5-Aryldipyrromethanes Following Route B from Scheme 1

SCHEME 4
SCHEME 4

Protonation of Porphodimethenes Occurs Predominantly at Their Pyrrolenine Nitrogens (ipso-Protonation, Required for Scrambling, is Improbable)

SCHEME 5
SCHEME 5

Aromatization of Ar2TCHPs 4a-d by Tetracyclone

SCHEME 6
SCHEME 6

Approaches to 4,7-Dihydroisoindole

SCHEME 7
SCHEME 7

Synthesis of 5,15-Diphenyloctahydro-tetrabenzoporphyrin

SCHEME 8
SCHEME 8

Synthesis of Ar2TBPs via Dihydroisoindole Pathway (Route A from Scheme 1)

Similar articles

Cited by

References

    1. Guha S, Kang K, Porter P, Roach JF, Remy DE, Aranda FJ, Rao DVGLN. Opt. Lett. 1992;17:264–266. - PubMed
    2. Brunel M, Chaput F, Vinogradov SA, Campagne B, Canva M, Boilot JP, Brun A. Chem. Phys. 1997;218:301–307.
    3. Aramaki S, Sakai Y, Ono N. Appl. Phys. Lett. 2004;84:2085–2087.
    4. Shea PB, Johnson AR, Ono N, Kanicki J. IEEE Trans. Electron Dev. 2005;52:1497–1503.
    5. Borek C, Hanson K, Djurovich PI, Thompson ME, Aznavour K, Bau R, Sun YR, Forrest SR, Brooks J, Michalski L, Brown J. Angew. Chem., Int. Ed. 2007;46:1109–1112. - PubMed
    1. Vinogradov SA, Wilson DFJ. Chem. Soc., Perkin Trans. 2. 1995:103–111.
    2. Dunphy I, Vinogradov SA, Wilson DF. Anal. Biochem. 2002;310:191–198. - PubMed
    3. Finikova OS, Galkin A, Rozhkov VV, Cordero M, Hägerhäll C, Vinogradov SA. J. Am. Chem. Soc. 2003;125:4882–4893. - PubMed
    4. Rietveld IB, Kim E, Vinogradov SA. Tetrahedron. 2003;59:3821–3831.
    5. Apreleva SV, Wilson DF, Vinogradov SA. Appl. Opt. 2006;45:8547–8559. - PMC - PubMed
    6. Wilson DF, Lee WMF, Makonnen S, Finikova O, Apreleva S, Vinogradov SA. J. Appl. Physiol. 2006;101:1648–1656. - PubMed
    7. Finikova OS, Troxler T, Senes A, DeGrado WF, Hochstrasser RM, Vinogradov SA. J. Phys. Chem. A. 2007;111:6977–6990. - PMC - PubMed
    1. Baluschev S, Yakutkin V, Miteva T, Avlasevich Y, Chernov S, Aleshchenkov S, Nelles G, Cheprakov A, Yasuda A, Mullen K, Wegner G. Angew. Chem., Int. Ed. 2007;46:7693–7696. - PubMed
    2. Baluschev S, Yakutkin V, Wegner G, Miteva T, Nelles G, Yasuda A, Chernov S, Aleshchenkov S, Cheprakov A. Appl. Phys. Lett. 2007;90:181103.
    3. Baluschev S, Yakutkin V, Miteva T, Wegner G, Roberts T, Nelles G, Yasuda A, Chernov S, Aleshchenkov S, Cheprakov A. New J. Phys. 2008;10:1–12.
    1. Friedberg JS, Skema C, Baum ED, Burdick J, Vinogradov SA, Wilson DF, Horan AD, Nachamkin I. J. Antimicrob. Chemother. 2001;48:105–107. - PubMed
    2. Ongayi O, Gottumukkala V, Fronczek FR, Vicente MGH. Bioorg. Med. Chem. Lett. 2005;15:1665–1668. - PubMed
    3. Gottumukkala V, Ongayi O, Baker DG, Lomax LG, Vicente MGH. Bioorg. Med. Chem. 2006;14:1871–1879. - PubMed
    1. Barrett PA, Linstead RP, Rundall FG, Tuey GAP. J. Chem. Soc. 1940:1079–1092.
    2. Bender CO, Bonnett R, Smith RG. Chem. Commun. 1969:345–346.
    3. Bender CO, Bonnett R, Smith RG. J. Chem. Soc. C. 1970:1251–1257.
    4. Bender CO, Bonnett R, Smith RG. J. Chem. Soc., Perkin Trans. 1. 1972:771–776. - PubMed
    5. Remy DE. Tetrahedron Lett. 1983;24:1451–1454.
    6. Kopranenkov VN, Makarova EA, Luk’yanets EA. Zh. Obshch. Khim. 1981;51:2727–2730.
    7. Kopranenkov VN, Makarova EA, Dashkevich SN, Luk’yanets EA. Khim. Geterotsikl. Soed. 1988:773–779.
    8. Galanin NE, Kudrik EV, Shaposhnikov GP. Russ. J. Gen. Chem. 1997;67:1306–1309.
    9. Galanin NE, Kudrik EV, Shaposhnikov GP. Russ. J. Gen. Chem. 2002;72:1119–1122.
    10. Ichimura K, Sakruagi M, Morii H, Yasuike M, Fukui M, Ohno O. Inorg. Chim. Acta. 1991;182:83–86.

Publication types

MeSH terms

Substances