Synthesis of 5,15-diaryltetrabenzoporphyrins - PubMed
- ️Tue Jan 01 2008
. 2008 Jun 6;73(11):4175-85.
doi: 10.1021/jo800509k. Epub 2008 May 2.
Affiliations
- PMID: 18452337
- PMCID: PMC2491715
- DOI: 10.1021/jo800509k
Synthesis of 5,15-diaryltetrabenzoporphyrins
Mikhail A Filatov et al. J Org Chem. 2008.
Abstract
A general method of synthesis of 5,15-diaryltetrabenzoporphyrins (Ar 2TBPs) has been developed, based on 2 + 2 condensation of dipyrromethanes followed by oxidative aromatization. Two pathways to Ar 2TBPs were investigated: the tetrahydroisoindole pathway and the dihydroisoindole pathway. In the tetrahydroisoindole pathway, precursor 5,15-diaryltetracyclohexenoporphyrins (5,15-Ar 2TCHPs) were assembled from cyclohexeno-fused meso-unsubstituted dipyrromethanes and aromatic aldehydes or, alternatively, by way of the classical MacDonald synthesis. In the first case, scrambling was observed. Aromatization by tetracyclone was more effective than aromatization by DDQ but failed in the cases of porphyrins with electron-withdrawing substituents in the meso-aryl rings. The dihydroisoindole pathway was found to be much superior to the tetrahydroisoindole pathway, and it was developed into a general preparative method, consisting of (1) the synthesis of 4,7-dihydroisoindole and its transformation into meso-unsubstituted dipyrromethanes, (2) the synthesis of 5,15-diaryloctahydrotetrabenzoporphyrins (5,15-Ar 2OHTBPs), and (3) their subsequent aromatization by DDQ. Ar 2TBP free bases exhibit optical absorption spectra similar to those of meso-unsubstituted tetrabenzoporphyrins and fluoresce with high quantum yields. Pd complex of Ph 2TBP was found to be highly phosphorescent at room temperature.
Figures

5,15-Diaryltetrabenzoporphyrin (Ar2TBP)

Absorption and emission (insets) spectra of 8a (A) in toluene and of Pd-8a (B) in Ar-purged dimethylacetamide at 23 °C. A (inset): fluorescence, λex = 571 nm, φfluo = 0.38. B (inset): phosphorescence, λex = 610 nm, φphos = 0.19.

Fluorescence of 8a induced by two-photon absorption at 840 nm (110 fs, 76 MHz rep. rate) and its dependence on the incident laser power (inset). The data points (integrated fluorescence intensity (I) versus excitation power (P)) were fitted to a quadratic function I(P) = aP2 (solid line).

Approaches to Ar2TCHPs

Synthesis of Ar2TCHPs 4a-e Following Route A (Scheme 1)

Synthesis of Ar2TCHPs 4a-c from 5-Aryldipyrromethanes Following Route B from Scheme 1

Protonation of Porphodimethenes Occurs Predominantly at Their Pyrrolenine Nitrogens (ipso-Protonation, Required for Scrambling, is Improbable)

Aromatization of Ar2TCHPs 4a-d by Tetracyclone

Approaches to 4,7-Dihydroisoindole

Synthesis of 5,15-Diphenyloctahydro-tetrabenzoporphyrin

Synthesis of Ar2TBPs via Dihydroisoindole Pathway (Route A from Scheme 1)
Similar articles
-
Finikova OS, Cheprakov AV, Vinogradov SA. Finikova OS, et al. J Org Chem. 2005 Nov 11;70(23):9562-72. doi: 10.1021/jo051580r. J Org Chem. 2005. PMID: 16268634 Free PMC article.
-
Lebedev AY, Filatov MA, Cheprakov AV, Vinogradov SA. Lebedev AY, et al. J Phys Chem A. 2008 Aug 21;112(33):7723-33. doi: 10.1021/jp8043626. Epub 2008 Jul 30. J Phys Chem A. 2008. PMID: 18665576 Free PMC article.
-
Rational syntheses of porphyrins bearing up to four different meso substituents.
Rao PD, Dhanalekshmi S, Littler BJ, Lindsey JS. Rao PD, et al. J Org Chem. 2000 Nov 3;65(22):7323-44. doi: 10.1021/jo000882k. J Org Chem. 2000. PMID: 11076589
-
Novel versatile synthesis of substituted tetrabenzoporphyrins.
Finikova OS, Cheprakov AV, Beletskaya IP, Carroll PJ, Vinogradov SA. Finikova OS, et al. J Org Chem. 2004 Jan 23;69(2):522-35. doi: 10.1021/jo0350054. J Org Chem. 2004. PMID: 14725469
-
Structural diversity in expanded porphyrins.
Misra R, Chandrashekar TK. Misra R, et al. Acc Chem Res. 2008 Feb;41(2):265-79. doi: 10.1021/ar700091k. Epub 2008 Feb 19. Acc Chem Res. 2008. PMID: 18281947 Review.
Cited by
-
Rausaria S, Ghaffari MM, Kamadulski A, Rodgers K, Bryant L, Chen Z, Doyle T, Shaw MJ, Salvemini D, Neumann WL. Rausaria S, et al. J Med Chem. 2011 Dec 22;54(24):8658-69. doi: 10.1021/jm201233r. Epub 2011 Nov 22. J Med Chem. 2011. PMID: 22082008 Free PMC article.
-
Esipova TV, Rivera-Jacquez HJ, Weber B, Masunov AE, Vinogradov SA. Esipova TV, et al. J Am Chem Soc. 2016 Dec 7;138(48):15648-15662. doi: 10.1021/jacs.6b09157. Epub 2016 Nov 23. J Am Chem Soc. 2016. PMID: 27934026 Free PMC article.
-
Synthesis and spectroscopic properties of β,β'-dibenzo-3,5,8-triaryl-BODIPYs.
Meng Q, Fronczek FR, Vicente MG. Meng Q, et al. New J Chem. 2016;40(7):5740-5751. doi: 10.1039/C5NJ03324A. Epub 2016 Feb 8. New J Chem. 2016. PMID: 27708532 Free PMC article.
-
Pi-extended dipyrrins capable of highly fluorogenic complexation with metal ions.
Filatov MA, Lebedev AY, Mukhin SN, Vinogradov SA, Cheprakov AV. Filatov MA, et al. J Am Chem Soc. 2010 Jul 21;132(28):9552-4. doi: 10.1021/ja102852v. J Am Chem Soc. 2010. PMID: 20583759 Free PMC article.
-
Cooper C, Paul R, Alsaleh A, Washburn S, Rackers W, Kumar S, Nesterov VN, D'Souza F, Vinogradov SA, Wang H. Cooper C, et al. Chemistry. 2023 Oct 13;29(57):e202302013. doi: 10.1002/chem.202302013. Epub 2023 Sep 11. Chemistry. 2023. PMID: 37467466 Free PMC article.
References
-
- Guha S, Kang K, Porter P, Roach JF, Remy DE, Aranda FJ, Rao DVGLN. Opt. Lett. 1992;17:264–266. - PubMed
- Brunel M, Chaput F, Vinogradov SA, Campagne B, Canva M, Boilot JP, Brun A. Chem. Phys. 1997;218:301–307.
- Aramaki S, Sakai Y, Ono N. Appl. Phys. Lett. 2004;84:2085–2087.
- Shea PB, Johnson AR, Ono N, Kanicki J. IEEE Trans. Electron Dev. 2005;52:1497–1503.
- Borek C, Hanson K, Djurovich PI, Thompson ME, Aznavour K, Bau R, Sun YR, Forrest SR, Brooks J, Michalski L, Brown J. Angew. Chem., Int. Ed. 2007;46:1109–1112. - PubMed
-
- Vinogradov SA, Wilson DFJ. Chem. Soc., Perkin Trans. 2. 1995:103–111.
- Dunphy I, Vinogradov SA, Wilson DF. Anal. Biochem. 2002;310:191–198. - PubMed
- Finikova OS, Galkin A, Rozhkov VV, Cordero M, Hägerhäll C, Vinogradov SA. J. Am. Chem. Soc. 2003;125:4882–4893. - PubMed
- Rietveld IB, Kim E, Vinogradov SA. Tetrahedron. 2003;59:3821–3831.
- Apreleva SV, Wilson DF, Vinogradov SA. Appl. Opt. 2006;45:8547–8559. - PMC - PubMed
- Wilson DF, Lee WMF, Makonnen S, Finikova O, Apreleva S, Vinogradov SA. J. Appl. Physiol. 2006;101:1648–1656. - PubMed
- Finikova OS, Troxler T, Senes A, DeGrado WF, Hochstrasser RM, Vinogradov SA. J. Phys. Chem. A. 2007;111:6977–6990. - PMC - PubMed
-
- Baluschev S, Yakutkin V, Miteva T, Avlasevich Y, Chernov S, Aleshchenkov S, Nelles G, Cheprakov A, Yasuda A, Mullen K, Wegner G. Angew. Chem., Int. Ed. 2007;46:7693–7696. - PubMed
- Baluschev S, Yakutkin V, Wegner G, Miteva T, Nelles G, Yasuda A, Chernov S, Aleshchenkov S, Cheprakov A. Appl. Phys. Lett. 2007;90:181103.
- Baluschev S, Yakutkin V, Miteva T, Wegner G, Roberts T, Nelles G, Yasuda A, Chernov S, Aleshchenkov S, Cheprakov A. New J. Phys. 2008;10:1–12.
-
- Friedberg JS, Skema C, Baum ED, Burdick J, Vinogradov SA, Wilson DF, Horan AD, Nachamkin I. J. Antimicrob. Chemother. 2001;48:105–107. - PubMed
- Ongayi O, Gottumukkala V, Fronczek FR, Vicente MGH. Bioorg. Med. Chem. Lett. 2005;15:1665–1668. - PubMed
- Gottumukkala V, Ongayi O, Baker DG, Lomax LG, Vicente MGH. Bioorg. Med. Chem. 2006;14:1871–1879. - PubMed
-
- Barrett PA, Linstead RP, Rundall FG, Tuey GAP. J. Chem. Soc. 1940:1079–1092.
- Bender CO, Bonnett R, Smith RG. Chem. Commun. 1969:345–346.
- Bender CO, Bonnett R, Smith RG. J. Chem. Soc. C. 1970:1251–1257.
- Bender CO, Bonnett R, Smith RG. J. Chem. Soc., Perkin Trans. 1. 1972:771–776. - PubMed
- Remy DE. Tetrahedron Lett. 1983;24:1451–1454.
- Kopranenkov VN, Makarova EA, Luk’yanets EA. Zh. Obshch. Khim. 1981;51:2727–2730.
- Kopranenkov VN, Makarova EA, Dashkevich SN, Luk’yanets EA. Khim. Geterotsikl. Soed. 1988:773–779.
- Galanin NE, Kudrik EV, Shaposhnikov GP. Russ. J. Gen. Chem. 1997;67:1306–1309.
- Galanin NE, Kudrik EV, Shaposhnikov GP. Russ. J. Gen. Chem. 2002;72:1119–1122.
- Ichimura K, Sakruagi M, Morii H, Yasuike M, Fukui M, Ohno O. Inorg. Chim. Acta. 1991;182:83–86.
Publication types
MeSH terms
Substances
Grants and funding
- R01 HL081273-03/HL/NHLBI NIH HHS/United States
- HL 081273/HL/NHLBI NIH HHS/United States
- R01 NS031465/NS/NINDS NIH HHS/United States
- R01 NS031465-14/NS/NINDS NIH HHS/United States
- EB 007279/EB/NIBIB NIH HHS/United States
- R01 HL081273/HL/NHLBI NIH HHS/United States
- R01 HL081273-01A1/HL/NHLBI NIH HHS/United States
- R01 HL081273-02/HL/NHLBI NIH HHS/United States
- R01 EB007279/EB/NIBIB NIH HHS/United States
- R01 NS031465-13A2/NS/NINDS NIH HHS/United States
- R01 NS031465-15/NS/NINDS NIH HHS/United States
- R01 EB007279-02/EB/NIBIB NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials