The deep archaeal roots of eukaryotes - PubMed
Comparative Study
. 2008 Aug;25(8):1619-30.
doi: 10.1093/molbev/msn108. Epub 2008 May 6.
Affiliations
- PMID: 18463089
- PMCID: PMC2464739
- DOI: 10.1093/molbev/msn108
Comparative Study
The deep archaeal roots of eukaryotes
Natalya Yutin et al. Mol Biol Evol. 2008 Aug.
Abstract
The set of conserved eukaryotic protein-coding genes includes distinct subsets one of which appears to be most closely related to and, by inference, derived from archaea, whereas another one appears to be of bacterial, possibly, endosymbiotic origin. The "archaeal" genes of eukaryotes, primarily, encode components of information-processing systems, whereas the "bacterial" genes are predominantly operational. The precise nature of the archaeo-eukaryotic relationship remains uncertain, and it has been variously argued that eukaryotic informational genes evolved from the homologous genes of Euryarchaeota or Crenarchaeota (the major branches of extant archaea) or that the origin of eukaryotes lies outside the known diversity of archaea. We describe a comprehensive set of 355 eukaryotic genes of apparent archaeal origin identified through ortholog detection and phylogenetic analysis. Phylogenetic hypothesis testing using constrained trees, combined with a systematic search for shared derived characters in the form of homologous inserts in conserved proteins, indicate that, for the majority of these genes, the preferred tree topology is one with the eukaryotic branch placed outside the extant diversity of archaea although small subsets of genes show crenarchaeal and euryarchaeal affinities. Thus, the archaeal genes in eukaryotes appear to descend from a distinct, ancient, and otherwise uncharacterized archaeal lineage that acquired some euryarchaeal and crenarchaeal genes via early horizontal gene transfer.
Figures

Phylogenetic classification of the archaeal–eukaryotic orthologs. (a) Flowchart of the procedure. (b) Breakdown of orthologous clusters by inferred origin A, archaea; B, bacteria; CA, Crenarchaeota; E, eukaryotes; and EA, Euryarchaeota. For further details, see text.

Functional classification of ancestral eukaryotic genes of different probable origins. (a) Distribution of ancestral eukaryotic genes of different inferred origins by functional categories. The functional classes are as in the COG database: C, energy production and conversion; D, cell division; E, amino acid metabolism and transport; F, nucleotide metabolism and transport; G, carbohydrate metabolism and transport; H, coenzyme metabolism; I, lipid metabolism; J, translation; K, transcription; L, replication and repair; O, posttranslational modification, protein turnover, and chaperone functions; Q, secondary metabolism; T, signal transduction; U, intracellular trafficking and secretion; V, defense and resistance; R, general functional prediction only (typically, prediction of biochemical activity); and S, function unknown. (b) Fractions of arCOGs belonging to different functional classes in the set of 975 A–E pairs and in the set of 351 eukaryotic genes of inferred archaeal origin. (c) Log-odds ratio of the fraction of arCOGs belonging to different functional classes relative to the fraction of arCOGs that belong to the A–E set and the set of eukaryotic genes of inferred archaeal origin (1,008/7,538 and 286/7,538, respectively). The log base is 2.

The evolutionary relationship between archaea and eukaryotes assessed by phylogenetic analysis of 136 A–E–B clusters. The ELW values are plotted on a simplex surface.

Distribution of the deep, crenarchaeal, and euryarchaeal topologies depending on the ELW value cutoff.

A cartoon representation of the deep, crenarchaeal, and euryarchaeal inferred origins of the archaeal genes in eukaryotes.
Similar articles
-
Makarova KS, Aravind L, Galperin MY, Grishin NV, Tatusov RL, Wolf YI, Koonin EV. Makarova KS, et al. Genome Res. 1999 Jul;9(7):608-28. Genome Res. 1999. PMID: 10413400
-
Genome trees constructed using five different approaches suggest new major bacterial clades.
Wolf YI, Rogozin IB, Grishin NV, Tatusov RL, Koonin EV. Wolf YI, et al. BMC Evol Biol. 2001 Oct 20;1:8. doi: 10.1186/1471-2148-1-8. BMC Evol Biol. 2001. PMID: 11734060 Free PMC article.
-
The two-domain tree of life is linked to a new root for the Archaea.
Raymann K, Brochier-Armanet C, Gribaldo S. Raymann K, et al. Proc Natl Acad Sci U S A. 2015 May 26;112(21):6670-5. doi: 10.1073/pnas.1420858112. Epub 2015 May 11. Proc Natl Acad Sci U S A. 2015. PMID: 25964353 Free PMC article.
-
Makarova KS, Krupovic M, Koonin EV. Makarova KS, et al. Front Microbiol. 2014 Jul 21;5:354. doi: 10.3389/fmicb.2014.00354. eCollection 2014. Front Microbiol. 2014. PMID: 25101062 Free PMC article. Review.
-
The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes.
Koonin EV, Yutin N. Koonin EV, et al. Cold Spring Harb Perspect Biol. 2014 Apr 1;6(4):a016188. doi: 10.1101/cshperspect.a016188. Cold Spring Harb Perspect Biol. 2014. PMID: 24691961 Free PMC article. Review.
Cited by
-
Complex archaea that bridge the gap between prokaryotes and eukaryotes.
Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJG. Spang A, et al. Nature. 2015 May 14;521(7551):173-179. doi: 10.1038/nature14447. Epub 2015 May 6. Nature. 2015. PMID: 25945739 Free PMC article.
-
Pluchon PF, Fouqueau T, Crezé C, Laurent S, Briffotaux J, Hogrel G, Palud A, Henneke G, Godfroy A, Hausner W, Thomm M, Nicolas J, Flament D. Pluchon PF, et al. PLoS One. 2013 Nov 7;8(11):e79707. doi: 10.1371/journal.pone.0079707. eCollection 2013. PLoS One. 2013. PMID: 24244547 Free PMC article.
-
Kannan S, Rogozin IB, Koonin EV. Kannan S, et al. BMC Evol Biol. 2014 Nov 25;14:237. doi: 10.1186/s12862-014-0237-5. BMC Evol Biol. 2014. PMID: 25421434 Free PMC article.
-
Akanuma S. Akanuma S. Life (Basel). 2017 Aug 6;7(3):33. doi: 10.3390/life7030033. Life (Basel). 2017. PMID: 28783077 Free PMC article. Review.
-
Deep phylogeny of cancer drivers and compensatory mutations.
Rochman ND, Wolf YI, Koonin EV. Rochman ND, et al. Commun Biol. 2020 Oct 2;3(1):551. doi: 10.1038/s42003-020-01276-7. Commun Biol. 2020. PMID: 33009502 Free PMC article.
References
-
- Anderson FE, Swofford DL. Should we be worried about long-branch attraction in real data sets? Investigations using metazoan 18S rDNA. Mol Phylogenet Evol. 2004;33:440–451. - PubMed
-
- Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol. 2008;6:245–252. - PubMed
-
- Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P. Toward automatic reconstruction of a highly resolved tree of life. Science. 2006;311:1283–1287. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources