pubmed.ncbi.nlm.nih.gov

Surface-enhanced laser desorption/ionization time-of-flight proteomic profiling of breast carcinomas identifies clinicopathologically relevant groups of patients similar to previously defined clusters from cDNA expression - PubMed

Surface-enhanced laser desorption/ionization time-of-flight proteomic profiling of breast carcinomas identifies clinicopathologically relevant groups of patients similar to previously defined clusters from cDNA expression

Kristyna Brozkova et al. Breast Cancer Res. 2008.

Abstract

Introduction: Microarray-based gene expression profiling represents a major breakthrough for understanding the molecular complexity of breast cancer. cDNA expression profiles cannot detect changes in activities that arise from post-translational modifications, however, and therefore do not provide a complete picture of all biologically important changes that occur in tumors. Additional opportunities to identify and/or validate molecular signatures of breast carcinomas are provided by proteomic approaches. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) offers high-throughput protein profiling, leading to extraction of protein array data, calling for effective and appropriate use of bioinformatics and statistical tools.

Methods: Whole tissue lysates of 105 breast carcinomas were analyzed on IMAC 30 ProteinChip Arrays (Bio-Rad, Hercules, CA, USA) using the ProteinChip Reader Model PBS IIc (Bio-Rad) and Ciphergen ProteinChip software (Bio-Rad, Hercules, CA, USA). Cluster analysis of protein spectra was performed to identify protein patterns potentially related to established clinicopathological variables and/or tumor markers.

Results: Unsupervised hierarchical clustering of 130 peaks detected in spectra from breast cancer tissue lysates provided six clusters of peaks and five groups of patients differing significantly in tumor type, nuclear grade, presence of hormonal receptors, mucin 1 and cytokeratin 5/6 or cytokeratin 14. These tumor groups resembled closely luminal types A and B, basal and HER2-like carcinomas.

Conclusion: Our results show similar clustering of tumors to those provided by cDNA expression profiles of breast carcinomas. This fact testifies the validity of the SELDI-TOF MS proteomic approach in such a type of study. As SELDI-TOF MS provides different information from cDNA expression profiles, the results suggest the technique's potential to supplement and expand our knowledge of breast cancer, to identify novel biomarkers and to produce clinically useful classifications of breast carcinomas.

PubMed Disclaimer

Figures

Figure 1
Figure 1

Graphical representation of Spearman correlation matrix of 130 surface-enhanced laser desorption/ionization time-of-flight mass spectrometry peaks. Red color intensity, positive correlation; green color intensity, negative correlation.

Figure 2
Figure 2

Result of hierarchical clustering in the form of a heat map of peak values. Rows represent 105 individual patients and columns represent 130 peaks used for the analysis. The value of the peak is indicated by the color intensity. Unsupervised hierarchical clustering revealed two (not labeled), three (labeled A, B, C), five (labeled I to V) and six (labeled 1 to 6) groups of patients.

Figure 3
Figure 3

Distribution of selected clinicopathological parameters within the cluster tree of patients. Each square label represents a case. ER, estrogen receptor; MUC1, mucin 1.

Comment in

Similar articles

Cited by

References

    1. Sotiriou C, Desmedt C. Gene expression profiling in breast cancer. Ann Oncol. 2006;17(Suppl 10):x259–x262. doi: 10.1093/annonc/mdl270. - DOI - PubMed
    1. Brenton JD, Carey LA, Ahmed AA, Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol. 2005;23:7350–7360. doi: 10.1200/JCO.2005.03.3845. - DOI - PubMed
    1. Vijver MJ van de, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, Velde T van der, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009. doi: 10.1056/NEJMoa021967. - DOI - PubMed
    1. Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, Liu ET. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA. 2003;100:10393–10398. doi: 10.1073/pnas.1732912100. - DOI - PMC - PubMed
    1. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, Rijn M van de, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lønning P, Børresen-Dale AL. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–10874. doi: 10.1073/pnas.191367098. - DOI - PMC - PubMed

Publication types

MeSH terms

Substances