pubmed.ncbi.nlm.nih.gov

Regenerating cochlear hair cells: quo vadis stem cell - PubMed

  • ️Fri Dec 15 5876

Review

Regenerating cochlear hair cells: quo vadis stem cell

Kirk Beisel et al. Cell Tissue Res. 2008 Sep.

Abstract

Many elderly people worldwide lose the neurosensory part of their ear and turn deaf. Cochlear implants to restore some hearing after neurosensory hearing loss are, at present, the only therapy for these people. In contrast to this therapy, replacement of hair cells via stem cell therapies holds the promise for a cure. We review here current insights into embryonic, adult, and inducible stem cells that might provide cells for seeding the cochlea with the hope of new hair cell formation. We propose a two-step approach using a first set of transcription factors to enhance the generation of inducible pluripotent stem (iPS) cells and a second set of factors to initiate the differentiation of hair cells. Recent evidence regarding ear development and stem cell research strongly suggest that microRNAs will be an important new regulatory factor in both iPS cell formation and differentiation to reprogram cells into hair cells. In addition, we highlight currently insurmountable obstacles to the successful transformation of stem cells into hair cell precursors and their injection into the cochlear canal to replace lost hair cells.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Alonso L, Fuchs E. The hair cycle. J Cell Sci. 2006;119:391–393. - PubMed
    1. Amaral PP, Dinger ME, Mercer TR, Mattick JS. The eukaryotic genome as an RNA machine. Science. 2008;319:1787–1789. - PubMed
    1. Bang AG, Carpenter MK. Development. Deconstructing pluripotency. Science. 2008;320:58–59. - PubMed
    1. Beites CL, Kawauchi S, Crocker CE, Calof AL. Identification and molecular regulation of neural stem cells in the olfactory epithelium. Exp Cell Res. 2005;306:309–316. - PubMed
    1. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–956. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources