The regulation of phenotypic plasticity of eyespots in the butterfly Bicyclus anynana - PubMed
The regulation of phenotypic plasticity of eyespots in the butterfly Bicyclus anynana
P M Brakefield et al. Am Nat. 1998 Dec.
Abstract
We use an outcrossed stock and selected lines of Bicyclus anynana in combination with measurements and manipulations of ecdysteroid hormones in early pupae to examine the regulation of eyespot size in adult butterflies. The eyespots on the ventral wing surfaces express adaptive phenotypic plasticity in response to the dry-wet seasonal environments of the butterflies. Larvae reared at low or high temperatures produce adults with small or large ventral eyespots, respectively. Our experiments examine the role of ecdysteroids in mediating this phenotypic plasticity. Higher titers of ecdysteroids shortly after pupation yield larger ventral wing eyespots. There is an uncoupling of the ventral eyespots and those on the dorsal forewing. The latter do not show phenotypic plasticity. They show very little response to rearing temperature, and variation in their size is not associated with differences in the dynamics of ecdysteroids in early pupae. A testable hypothesis in terms of the distribution of hormone receptors in the developmental "organizers" or foci of the eyespots is proposed to account for how some eyespots express plasticity while others do not.
Similar articles
-
Origin of the mechanism of phenotypic plasticity in satyrid butterfly eyespots.
Bhardwaj S, Jolander LS, Wenk MR, Oliver JC, Nijhout HF, Monteiro A. Bhardwaj S, et al. Elife. 2020 Feb 11;9:e49544. doi: 10.7554/eLife.49544. Elife. 2020. PMID: 32041684 Free PMC article.
-
Breuker CJ, Brakefield PM. Breuker CJ, et al. Heredity (Edinb). 2003 Jul;91(1):17-27. doi: 10.1038/sj.hdy.6800279. Heredity (Edinb). 2003. PMID: 12815449
-
Beldade P, French V, Brakefield PM. Beldade P, et al. J Exp Zool B Mol Dev Evol. 2008 Mar 15;310(2):191-201. doi: 10.1002/jez.b.21173. J Exp Zool B Mol Dev Evol. 2008. PMID: 17577201
-
Butterfly eyespot patterns and how evolutionary tinkering yields diversity.
Brakefield PM. Brakefield PM. Novartis Found Symp. 2007;284:90-101; discussion 101-15. doi: 10.1002/9780470319390.ch6. Novartis Found Symp. 2007. PMID: 17710849 Review.
-
The role of eyespots as anti-predator mechanisms, principally demonstrated in the Lepidoptera.
Stevens M. Stevens M. Biol Rev Camb Philos Soc. 2005 Nov;80(4):573-88. doi: 10.1017/S1464793105006810. Biol Rev Camb Philos Soc. 2005. PMID: 16221330 Review.
Cited by
-
Ng SY, Bhardwaj S, Monteiro A. Ng SY, et al. J Insect Sci. 2017 Jul 1;17(4):81. doi: 10.1093/jisesa/iex053. J Insect Sci. 2017. PMID: 28973485 Free PMC article.
-
Kulminski AM, Molleman F, Culminskaya IV, Arbeev KG, Ukraintseva SV, Carey JR, Yashin AI. Kulminski AM, et al. Exp Gerontol. 2009 Nov;44(11):718-26. doi: 10.1016/j.exger.2009.08.007. Epub 2009 Aug 27. Exp Gerontol. 2009. PMID: 19716408 Free PMC article.
-
Manipulation of insulin signaling phenocopies evolution of a host-associated polyphenism.
Fawcett MM, Parks MC, Tibbetts AE, Swart JS, Richards EM, Vanegas JC, Cenzer M, Crowley L, Simmons WR, Hou WS, Angelini DR. Fawcett MM, et al. Nat Commun. 2018 Apr 27;9(1):1699. doi: 10.1038/s41467-018-04102-1. Nat Commun. 2018. PMID: 29703888 Free PMC article.
-
van Bergen E, Osbaldeston D, Kodandaramaiah U, Brattström O, Aduse-Poku K, Brakefield PM. van Bergen E, et al. BMC Evol Biol. 2017 Feb 27;17(1):59. doi: 10.1186/s12862-017-0907-1. BMC Evol Biol. 2017. PMID: 28241743 Free PMC article.
-
Connahs H, Rhen T, Simmons RB. Connahs H, et al. PLoS One. 2016 Aug 25;11(8):e0161745. doi: 10.1371/journal.pone.0161745. eCollection 2016. PLoS One. 2016. PMID: 27560365 Free PMC article.