TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder - PubMed
TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder
Andrew Campen et al. Protein Pept Lett. 2008.
Abstract
Intrinsically disordered proteins carry out various biological functions while lacking ordered secondary and/or tertiary structure. In order to find general intrinsic properties of amino acid residues that are responsible for the absence of ordered structure in intrinsically disordered proteins we surveyed 517 amino acid scales. Each of these scales was taken as an independent attribute for the subsequent analysis. For a given attribute value X, which is averaged over a consecutive string of amino acids, and for a given data set having both ordered and disordered segments, the conditional probabilities P(s(o) | x) and P(s(d) | x) for order and disorder, respectively, can be determined for all possible values of X. Plots of the conditional probabilities P(s(o) | x) and P(s(o) | x) versus X give a pair of curves. The area between these two curves divided by the total area of the graph gives the area ratio value (ARV), which is proportional to the degree of separation of the two probability curves and, therefore, provides a measure of the given attribute's power to discriminate between order and disorder. As ARV falls between zero and one, larger ARV corresponds to the better discrimination between order and disorder. Starting from the scale with the highest ARV, we applied a simulated annealing procedure to search for alternative scale values and have managed to increase the ARV by more than 10%. The ranking of the amino acids in this new TOP-IDP scale is as follows (from order promoting to disorder promoting): W, F, Y, I, M, L, V, N, C, T, A, G, R, D, H, Q, K, S, E, P. A web-based server has been created to apply the TOP-IDP scale to predict intrinsically disordered proteins (http://www.disprot.org/dev/disindex.php).
Figures
Similar articles
-
The protein non-folding problem: amino acid determinants of intrinsic order and disorder.
Williams RM, Obradovi Z, Mathura V, Braun W, Garner EC, Young J, Takayama S, Brown CJ, Dunker AK. Williams RM, et al. Pac Symp Biocomput. 2001:89-100. doi: 10.1142/9789814447362_0010. Pac Symp Biocomput. 2001. PMID: 11262981
-
Basu S, Söderquist F, Wallner B. Basu S, et al. J Comput Aided Mol Des. 2017 May;31(5):453-466. doi: 10.1007/s10822-017-0020-y. Epub 2017 Apr 1. J Comput Aided Mol Des. 2017. PMID: 28365882 Free PMC article.
-
Improving protein order-disorder classification using charge-hydropathy plots.
Huang F, Oldfield CJ, Xue B, Hsu WL, Meng J, Liu X, Shen L, Romero P, Uversky VN, Dunker A. Huang F, et al. BMC Bioinformatics. 2014;15 Suppl 17(Suppl 17):S4. doi: 10.1186/1471-2105-15-S17-S4. Epub 2014 Dec 16. BMC Bioinformatics. 2014. PMID: 25559583 Free PMC article.
-
The intrinsic disorder alphabet. III. Dual personality of serine.
Uversky VN. Uversky VN. Intrinsically Disord Proteins. 2015 Mar 17;3(1):e1027032. doi: 10.1080/21690707.2015.1027032. eCollection 2015. Intrinsically Disord Proteins. 2015. PMID: 28232888 Free PMC article. Review.
-
Intrinsic disorder and functional proteomics.
Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK. Radivojac P, et al. Biophys J. 2007 Mar 1;92(5):1439-56. doi: 10.1529/biophysj.106.094045. Epub 2006 Dec 8. Biophys J. 2007. PMID: 17158572 Free PMC article. Review.
Cited by
-
Kumar A, Bhandari A, Sinha R, Sardar P, Sushma M, Goyal P, Goswami C, Grapputo A. Kumar A, et al. PLoS One. 2012;7(6):e39399. doi: 10.1371/journal.pone.0039399. Epub 2012 Jun 21. PLoS One. 2012. PMID: 22737237 Free PMC article.
-
Enzyme catalysis prior to aromatic residues: Reverse engineering of a dephospho-CoA kinase.
Makarov M, Meng J, Tretyachenko V, Srb P, Březinová A, Giacobelli VG, Bednárová L, Vondrášek J, Dunker AK, Hlouchová K. Makarov M, et al. Protein Sci. 2021 May;30(5):1022-1034. doi: 10.1002/pro.4068. Epub 2021 Mar 26. Protein Sci. 2021. PMID: 33739538 Free PMC article.
-
Functional correlations of respiratory syncytial virus proteins to intrinsic disorder.
Whelan JN, Reddy KD, Uversky VN, Teng MN. Whelan JN, et al. Mol Biosyst. 2016 Apr 26;12(5):1507-26. doi: 10.1039/c6mb00122j. Mol Biosyst. 2016. PMID: 27062995 Free PMC article.
-
Intrinsically Disordered Proteins: Critical Components of the Wetware.
Kulkarni P, Bhattacharya S, Achuthan S, Behal A, Jolly MK, Kotnala S, Mohanty A, Rangarajan G, Salgia R, Uversky V. Kulkarni P, et al. Chem Rev. 2022 Mar 23;122(6):6614-6633. doi: 10.1021/acs.chemrev.1c00848. Epub 2022 Feb 16. Chem Rev. 2022. PMID: 35170314 Free PMC article. Review.
-
Zhang F, Li M, Zhang J, Kurgan L. Zhang F, et al. Nucleic Acids Res. 2023 Mar 21;51(5):e25. doi: 10.1093/nar/gkac1253. Nucleic Acids Res. 2023. PMID: 36629262 Free PMC article.
References
-
- Wright PE, Dyson HJ. J Mol Biol. 1999;293:321–331. - PubMed
-
- Uversky VN, Gillespie JR, Fink AL. Proteins. 2000;41:415–427. - PubMed
-
- Dunker AK, Obradovic Z. Nat Biotechnol. 2001;19:805–806. - PubMed
-
- Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z. J Mol Graph Model. 2001;19:26–59. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials