Crystal structure of the ternary complex of ribulose-1,5-bisphosphate carboxylase, Mg(II), and activator CO2 at 2.3-A resolution - PubMed
- ️Tue Jan 01 1991
. 1991 Jan 29;30(4):904-8.
doi: 10.1021/bi00218a004.
Affiliations
- PMID: 1899197
- DOI: 10.1021/bi00218a004
Crystal structure of the ternary complex of ribulose-1,5-bisphosphate carboxylase, Mg(II), and activator CO2 at 2.3-A resolution
T Lundqvist et al. Biochemistry. 1991.
Abstract
The activated ternary complex, enzyme-CO2-Mg(II), of the dimeric ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum can be prepared in the same crystal form that was used for the crystallographic structure determination of the native nonactivated enzyme (Schneider, G., Bränden, C.-I., & Lorimer, G. (1986) J. Mol. Biol. 187, 141-143). The three-dimensional structure of the activated enzyme has been determined to a nominal resolution of 2.3 A by protein crystallographic methods. The activator CO2 forms a carbamate with Lys191, located at the bottom of the funnel-shaped active site. In both subunits, this labile adduct is stabilized by a Mg(II) ion, bound to the carbamate and the side chains of Asp193 and Glu194. One solvent molecule was found within the first coordination sphere of the metal ion. The metal-binding site in ribulose-1,5-bisphosphate carboxylase consists thus of at least three protein ligands, all located on loop 2 of the beta/alpha barrel. One additional metal ligand, the side chain of the conserved Asn111, was observed close to the Mg(II) ion in the B-subunit. Other structural differences at the active site between the activated and nonactivated enzyme are limited to side-chain positions. Nevertheless, it is obvious that the hydrogen-bonding pattern in the vicinity of the activator site is completely altered.
Similar articles
-
Schneider G, Lindqvist Y, Lundqvist T. Schneider G, et al. J Mol Biol. 1990 Feb 20;211(4):989-1008. doi: 10.1016/0022-2836(90)90088-4. J Mol Biol. 1990. PMID: 2107319
-
Söderlind E, Schneider G, Gutteridge S. Söderlind E, et al. Eur J Biochem. 1992 Jun 15;206(3):729-35. doi: 10.1111/j.1432-1033.1992.tb16979.x. Eur J Biochem. 1992. PMID: 1606957
-
Schneider G, Brändén CI, Lorimer G. Schneider G, et al. J Mol Biol. 1984 May 5;175(1):99-102. doi: 10.1016/0022-2836(84)90450-9. J Mol Biol. 1984. PMID: 6427471
-
Hartman FC, Harpel MR. Hartman FC, et al. Adv Enzymol Relat Areas Mol Biol. 1993;67:1-75. doi: 10.1002/9780470123133.ch1. Adv Enzymol Relat Areas Mol Biol. 1993. PMID: 8322615 Review. No abstract available.
Cited by
-
A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens.
Borders CL Jr, Broadwater JA, Bekeny PA, Salmon JE, Lee AS, Eldridge AM, Pett VB. Borders CL Jr, et al. Protein Sci. 1994 Apr;3(4):541-8. doi: 10.1002/pro.5560030402. Protein Sci. 1994. PMID: 8003972 Free PMC article. Review.
-
Schreuder HA, Knight S, Curmi PM, Andersson I, Cascio D, Sweet RM, Brändén CI, Eisenberg D. Schreuder HA, et al. Protein Sci. 1993 Jul;2(7):1136-46. doi: 10.1002/pro.5560020708. Protein Sci. 1993. PMID: 8358296 Free PMC article.
-
Schreuder HA, Knight S, Curmi PM, Andersson I, Cascio D, Brändén CI, Eisenberg D. Schreuder HA, et al. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9968-72. doi: 10.1073/pnas.90.21.9968. Proc Natl Acad Sci U S A. 1993. PMID: 8234342 Free PMC article.
-
Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs.
Tabita FR, Hanson TE, Li H, Satagopan S, Singh J, Chan S. Tabita FR, et al. Microbiol Mol Biol Rev. 2007 Dec;71(4):576-99. doi: 10.1128/MMBR.00015-07. Microbiol Mol Biol Rev. 2007. PMID: 18063718 Free PMC article. Review.
-
Paul K, Morell MK, Andrews TJ. Paul K, et al. Plant Physiol. 1993 Aug;102(4):1129-37. doi: 10.1104/pp.102.4.1129. Plant Physiol. 1993. PMID: 8278544 Free PMC article.