The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern - PubMed
The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern
C Saccone et al. J Mol Evol. 1991 Jul.
Abstract
The evolution of the main regulatory region (D-loop) of the mammalian mitochondrial genome was analyzed by comparing the sequences of eight mammalian species: human, common chimpanzee, pygmy chimpanzee, dolphin, cow, rat, mouse, and rabbit. The best alignment of the sequences was obtained by optimization of the sequence similarities common to all these species. The two peripheral left and right D-loop domains, which contain the main regulatory elements so far discovered, evolved rapidly in a species-specific manner generating heterogeneity in both length and base composition. They are prone to the insertion and deletion of elements and to the generation of short repeats by replication slippage. However, the preservation of some sequence blocks and similar cloverleaf-like structures in these regions, indicates a basic similarity in the regulatory mechanisms of the mitochondrial genome in all mammalian species. We found, particularly in the right domain, significant similarities to the telomeric sequences of the mitochondrial (mt) and nuclear DNA of Tetrahymena thermophila. These sequences may be interpreted as relics of telomeres present in ancestral linear forms of mtDNA or may simply represent efficient templates of RNA primase-like enzymes. Due to their peculiar evolution, the two peripheral domains cannot be used to estimate in a quantitative way the genetic distances between mammalian species. On the other hand the central domain, highly conserved during evolution, behaves as a good molecular clock. Reliable estimates of the times of divergence between closely and distantly related species were obtained from the central domain using a Markov model and assuming nonhomogeneous evolution of nucleotide sites.
Similar articles
-
Sbisà E, Tanzariello F, Reyes A, Pesole G, Saccone C. Sbisà E, et al. Gene. 1997 Dec 31;205(1-2):125-40. doi: 10.1016/s0378-1119(97)00404-6. Gene. 1997. PMID: 9461386
-
Evolution and structural conservation of the control region of insect mitochondrial DNA.
Zhang DX, Szymura JM, Hewitt GM. Zhang DX, et al. J Mol Evol. 1995 Apr;40(4):382-91. doi: 10.1007/BF00164024. J Mol Evol. 1995. PMID: 7769615
-
Gemmell NJ, Western PS, Watson JM, Graves JA. Gemmell NJ, et al. Mol Biol Evol. 1996 Jul;13(6):798-808. doi: 10.1093/oxfordjournals.molbev.a025640. Mol Biol Evol. 1996. PMID: 8754216
-
Evolution by DNA turnover in the control region of vertebrate mitochondrial DNA.
Hoelzel AR. Hoelzel AR. Curr Opin Genet Dev. 1993 Dec;3(6):891-5. doi: 10.1016/0959-437x(93)90010-m. Curr Opin Genet Dev. 1993. PMID: 8118214 Review.
-
Horwitz MS, Dube DK, Loeb LA. Horwitz MS, et al. Genome. 1989;31(1):112-7. doi: 10.1139/g89-021. Genome. 1989. PMID: 2687088 Review.
Cited by
-
Bodt LH, Rollins LA, Zichello JM. Bodt LH, et al. Ecol Evol. 2020 Aug 27;10(18):10186-10195. doi: 10.1002/ece3.6679. eCollection 2020 Sep. Ecol Evol. 2020. PMID: 33005374 Free PMC article.
-
Jiang L, Peng L, Tang M, You Z, Zhang M, West A, Ruan Q, Chen W, Merilä J. Jiang L, et al. Ecol Evol. 2019 Jul 9;9(15):8813-8828. doi: 10.1002/ece3.5433. eCollection 2019 Aug. Ecol Evol. 2019. PMID: 31410282 Free PMC article.
-
Yue GH, Liew WC, Orban L. Yue GH, et al. BMC Genomics. 2006 Sep 21;7:242. doi: 10.1186/1471-2164-7-242. BMC Genomics. 2006. PMID: 16989663 Free PMC article.
-
Dadkhah K, Mianji GR, Barzegar A, Farhadi A. Dadkhah K, et al. BMC Ecol Evol. 2023 Sep 26;23(1):55. doi: 10.1186/s12862-023-02166-2. BMC Ecol Evol. 2023. PMID: 37749487 Free PMC article.
-
Protein binding to a single termination-associated sequence in the mitochondrial DNA D-loop region.
Madsen CS, Ghivizzani SC, Hauswirth WW. Madsen CS, et al. Mol Cell Biol. 1993 Apr;13(4):2162-71. doi: 10.1128/mcb.13.4.2162-2171.1993. Mol Cell Biol. 1993. PMID: 8455604 Free PMC article.