Cyclotron and linac production of Ac-225 - PubMed
Cyclotron and linac production of Ac-225
Graeme Melville et al. Appl Radiat Isot. 2009 Apr.
Abstract
Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. The reduction of radium by photonuclear transmutation by bombarding Ra-226 with high-energy photons from a medical linear accelerator (linac) has been investigated. A linac dose of 2800 Gy produced about 2.4 MBq (64 microCi) of Ra-225, which decays to Ac-225 and can then be used for 'Targeted Alpha Therapy' (TAT) of cancer. This result, while consistent with theoretical calculations, is far too low to be of practical use unless much larger quantities of radium are irradiated. The increasing application of Ac-225 for cancer therapy indicates the potential need for its increased production and availability. This paper investigates the possibility of producing of Ac-225 in commercial quantities, which could potentially reduce obsolete radioactive material and displace the need for expensive importation of Ac-225 from the USA and Russia in the years ahead. Scaled up production of Ac-225 could theoretically be achieved by the use of a high current cyclotron or linac. Production specifications are determined for a linac in terms of current, pulse length and frequency, as well as an examination of other factors such as radiation issues and radionuclei separation. Yields are compared with those calculated for the Australian National Cyclotron in Sydney.
Similar articles
-
Melville G, Fan Liu S, Allen BJ. Melville G, et al. Appl Radiat Isot. 2006 Sep;64(9):979-88. doi: 10.1016/j.apradiso.2006.05.002. Epub 2006 Jun 27. Appl Radiat Isot. 2006. PMID: 16806950
-
Production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226.
Melville G, Meriarty H, Metcalfe P, Knittel T, Allen BJ. Melville G, et al. Appl Radiat Isot. 2007 Sep;65(9):1014-22. doi: 10.1016/j.apradiso.2007.03.018. Epub 2007 Apr 12. Appl Radiat Isot. 2007. PMID: 17532223
-
Melville G, Melville P. Melville G, et al. Appl Radiat Isot. 2013 Feb;72:152-7. doi: 10.1016/j.apradiso.2012.09.019. Epub 2012 Oct 16. Appl Radiat Isot. 2013. PMID: 23220026
-
Jones B. Jones B. J Radiol Prot. 2009 Jun;29(2A):A143-57. doi: 10.1088/0952-4746/29/2A/S10. Epub 2009 May 19. J Radiol Prot. 2009. PMID: 19454805 Review.
-
Wakeford R. Wakeford R. J Radiol Prot. 2009 Jun;29(2A):A61-79. doi: 10.1088/0952-4746/29/2A/S05. Epub 2009 May 19. J Radiol Prot. 2009. PMID: 19454806 Review.
Cited by
-
Actinium-225 in Targeted Alpha Therapy.
Rahman AKMR, Babu MH, Ovi MK, Zilani MM, Eithu IS, Chakraborty A. Rahman AKMR, et al. J Med Phys. 2024 Apr-Jun;49(2):137-147. doi: 10.4103/jmp.jmp_22_24. Epub 2024 Jun 25. J Med Phys. 2024. PMID: 39131433 Free PMC article. Review.
-
Effect of graphite and graphene oxide on thorium carbide microstructural and thermal properties.
Corradetti S, Carturan SM, Ballan M, Eloirdi R, Amador Celdran P, Walter O, Staicu D, Dieste Blanco O, Andrighetto A, Biasetto L. Corradetti S, et al. Sci Rep. 2021 Apr 27;11(1):9058. doi: 10.1038/s41598-021-87621-0. Sci Rep. 2021. PMID: 33907205 Free PMC article.
-
Juzeniene A, Stenberg VY, Bruland ØS, Larsen RH. Juzeniene A, et al. Cancers (Basel). 2021 Feb 13;13(4):779. doi: 10.3390/cancers13040779. Cancers (Basel). 2021. PMID: 33668474 Free PMC article. Review.
-
Actinium-225 Targeted Agents: Where Are We Now?
Mourtada F, Tomiyoshi K, Sims-Mourtada J, Mukai-Sasaki Y, Yagihashi T, Namiki Y, Murai T, Yang DJ, Inoue T. Mourtada F, et al. Brachytherapy. 2023 Nov-Dec;22(6):697-708. doi: 10.1016/j.brachy.2023.06.228. Epub 2023 Sep 9. Brachytherapy. 2023. PMID: 37690972 Free PMC article. Review.
-
Production Review of Accelerator-Based Medical Isotopes.
Wang Y, Chen D, Augusto RDS, Liang J, Qin Z, Liu J, Liu Z. Wang Y, et al. Molecules. 2022 Aug 19;27(16):5294. doi: 10.3390/molecules27165294. Molecules. 2022. PMID: 36014532 Free PMC article. Review.
LinkOut - more resources
Full Text Sources
Other Literature Sources