Convection-enhanced delivery of nanocarriers for the treatment of brain tumors - PubMed
Review
. 2009 Apr;30(12):2302-18.
doi: 10.1016/j.biomaterials.2009.01.003. Epub 2009 Jan 24.
Affiliations
- PMID: 19168213
- DOI: 10.1016/j.biomaterials.2009.01.003
Free article
Review
Convection-enhanced delivery of nanocarriers for the treatment of brain tumors
Emilie Allard et al. Biomaterials. 2009 Apr.
Free article
Abstract
Primary brain tumors have a significant infiltrative capacity as their reappearance after resection usually occurs within 2cm of the tumor margin. Local delivery method such as Convection-Enhanced Delivery (CED) has been introduced to avoid this recurrence by delivering active molecules via positive-pressure methods. For an efficient infusion, the distribution volume of the drug has to be optimized while avoiding backflow, since this is responsible for side effects and a reduction of therapeutic efficacy. The encapsulation of the drug infused in nanosized structures can be considered, which would lead to a reduction of both toxicity of the treatment and infusion time during CED. In the present review, we will firstly discuss the technical approach of CED with regard to catheter design and brain characteristics; secondly, we will describe the 'ideal' nanocarrier in terms of size, surface properties, and interaction with the extracellular matrix for optimal diffusion in the brain parenchyma. We also discuss preclinical and clinical applications of this new method.
Similar articles
-
Future of convection-enhanced delivery in the treatment of brain tumors.
Bidros DS, Liu JK, Vogelbaum MA. Bidros DS, et al. Future Oncol. 2010 Jan;6(1):117-25. doi: 10.2217/fon.09.135. Future Oncol. 2010. PMID: 20021213 Review.
-
Tanner PG, Holtmannspötter M, Tonn JC, Goldbrunner R. Tanner PG, et al. Neurosurgery. 2007 Oct;61(4):E880-2; discussion E882. doi: 10.1227/01.NEU.0000298922.77921.F2. Neurosurgery. 2007. PMID: 17986926 Clinical Trial.
-
Noble CO, Krauze MT, Drummond DC, Yamashita Y, Saito R, Berger MS, Kirpotin DB, Bankiewicz KS, Park JW. Noble CO, et al. Cancer Res. 2006 Mar 1;66(5):2801-6. doi: 10.1158/0008-5472.CAN-05-3535. Cancer Res. 2006. PMID: 16510602
-
Kawakami K, Kawakami M, Kioi M, Husain SR, Puri RK. Kawakami K, et al. J Neurosurg. 2004 Dec;101(6):1004-11. doi: 10.3171/jns.2004.101.6.1004. J Neurosurg. 2004. PMID: 15597761
-
Convection-enhanced delivery in the treatment of malignant glioma.
Lopez KA, Waziri AE, Canoll PD, Bruce JN. Lopez KA, et al. Neurol Res. 2006 Jul;28(5):542-8. doi: 10.1179/016164106X116836. Neurol Res. 2006. PMID: 16808887 Review.
Cited by
-
Kim SS, Harford JB, Pirollo KF, Chang EH. Kim SS, et al. Biochem Biophys Res Commun. 2015 Dec 18;468(3):485-9. doi: 10.1016/j.bbrc.2015.06.137. Epub 2015 Jun 24. Biochem Biophys Res Commun. 2015. PMID: 26116770 Free PMC article. Review.
-
Shi M, Fortin D, Sanche L, Paquette B. Shi M, et al. Invest New Drugs. 2015 Jun;33(3):555-63. doi: 10.1007/s10637-015-0228-4. Epub 2015 Mar 18. Invest New Drugs. 2015. PMID: 25784204 Free PMC article.
-
Finbloom JA, Aanei IL, Bernard JM, Klass SH, Elledge SK, Han K, Ozawa T, Nicolaides TP, Berger MS, Francis MB. Finbloom JA, et al. Nanomaterials (Basel). 2018 Dec 5;8(12):1007. doi: 10.3390/nano8121007. Nanomaterials (Basel). 2018. PMID: 30563038 Free PMC article.
-
Neural stem cells improve intracranial nanoparticle retention and tumor-selective distribution.
Mooney R, Weng Y, Tirughana-Sambandan R, Valenzuela V, Aramburo S, Garcia E, Li Z, Gutova M, Annala AJ, Berlin JM, Aboody KS. Mooney R, et al. Future Oncol. 2014 Feb;10(3):401-15. doi: 10.2217/fon.13.217. Future Oncol. 2014. PMID: 24559447 Free PMC article.
-
Kluiver TA, Alieva M, van Vuurden DG, Wehrens EJ, Rios AC. Kluiver TA, et al. Front Oncol. 2020 Feb 7;10:92. doi: 10.3389/fonc.2020.00092. eCollection 2020. Front Oncol. 2020. PMID: 32117746 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical