Exploring the chemistry and biology of vanadium-dependent haloperoxidases - PubMed
- ️Thu Jan 01 2009
Review
Exploring the chemistry and biology of vanadium-dependent haloperoxidases
Jaclyn M Winter et al. J Biol Chem. 2009.
Abstract
Nature has developed an exquisite array of methods to introduce halogen atoms into organic compounds. Most of these enzymes are oxidative and require either hydrogen peroxide or molecular oxygen as a cosubstrate to generate a reactive halogen atom for catalysis. Vanadium-dependent haloperoxidases contain a vanadate prosthetic group and utilize hydrogen peroxide to oxidize a halide ion into a reactive electrophilic intermediate. These metalloenzymes have a large distribution in nature, where they are present in macroalgae, fungi, and bacteria, but have been exclusively characterized in eukaryotes. In this minireview, we highlight the chemistry and biology of vanadium-dependent haloperoxidases from fungi and marine algae and the emergence of new bacterial members that extend the biological function of these poorly understood halogenating enzymes.
Figures
![FIGURE 1.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7da6/2707250/4cdc0475e4a5/zbc0250978680001.gif)
Relatedness of V-BrPOs, V-ClPOs, and acid phosphatases identified in fungi, algae, and bacteria and some of their associated chemistry. Phylogenetic analysis was performed using ClustalW (56), and the unrooted neighbor-joining tree was visualized by TreeView. The scale bar indicates 0.1 changes per amino acid. Sequence identification codes include Ci_VClPO from C. inaequalis (accession number CAA59686), hypothetical Rb_VClPO from Rhodopirellula baltica SH1 (CAD72609), Ed_VClPO from E. didymospora (CAA72622), hypothetical Ss1_VClPO from Streptomyces sp. CNQ-525 (ABS50486), hypothetical Ss3_VClPO from Streptomyces sp. CNQ-525 (ABS50491), hypothetical Ss4_VClPO from Streptomyces sp. CNQ-525 (ABS50492), hypothetical Cs_VClPO from Cellulophaga sp. MED134 (ZP_01050453), An_VBrPO from A. nodosum (P81701), Co_VBrPO from C. officinalis (AAM46061), Cp1_VBrPO from C. pilulifera (BAA31261), Cp2_VBrPO from C. pilulifera (BAA31262), hypothetical Sys_VBrPO from Synechococcus sp. CC9311 (YP_731869), Fd_VBrPO from Fucus distichus (AAC35279), Ld1_VBrPO from L. digitata (CAD37191), Ld2_VBrPO from L. digitata (CAD37192), Pi_ACP acid phosphatase from Prevotella intermedia (AB017537), Kp_ACP acid phosphatase from Klebsiella pneumonia (AJ250377), St_ACP acid phosphatase from Salmonella typhimurium (X63599), Ps_ACP acid phosphatase from Providencia stuartii (X64820), and Eb_ACP acid phosphatase from Escherichia blattae (AB020481). Halogenated natural products are α-snyderol (2), β-snyderol (3), γ-snyderol (4), and A80915C (6). Proposed substrates for V-HPOs are (E)-(+)-nerolidol (1) and SF2415B1 (5).
![FIGURE 2.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7da6/2707250/629401ea2ba3/zbc0250978680002.gif)
A, vanadium site of native V-ClPO from C. inaequalis. Possible hydrogen bonds are drawn as dashed lines (adapted from Refs. – and 43). B, proposed catalytic scheme of V-ClPO (adapted from Refs. , , and 46).
Similar articles
-
Coordination environment changes of the vanadium in vanadium-dependent haloperoxidase enzymes.
McLauchlan CC, Murakami HA, Wallace CA, Crans DC. McLauchlan CC, et al. J Inorg Biochem. 2018 Sep;186:267-279. doi: 10.1016/j.jinorgbio.2018.06.011. Epub 2018 Jun 18. J Inorg Biochem. 2018. PMID: 29990751 Review.
-
Enzymatic Halogenases and Haloperoxidases: Computational Studies on Mechanism and Function.
Timmins A, de Visser SP. Timmins A, et al. Adv Protein Chem Struct Biol. 2015;100:113-51. doi: 10.1016/bs.apcsb.2015.06.001. Epub 2015 Jul 8. Adv Protein Chem Struct Biol. 2015. PMID: 26415843 Review.
-
Structural perspective on enzymatic halogenation.
Blasiak LC, Drennan CL. Blasiak LC, et al. Acc Chem Res. 2009 Jan 20;42(1):147-55. doi: 10.1021/ar800088r. Acc Chem Res. 2009. PMID: 18774824 Free PMC article. Review.
-
The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products.
Butler A, Carter-Franklin JN. Butler A, et al. Nat Prod Rep. 2004 Feb;21(1):180-8. doi: 10.1039/b302337k. Epub 2004 Jan 21. Nat Prod Rep. 2004. PMID: 15039842 Review.
-
Environmental Control of Vanadium Haloperoxidases and Halocarbon Emissions in Macroalgae.
Punitha T, Phang SM, Juan JC, Beardall J. Punitha T, et al. Mar Biotechnol (NY). 2018 Jun;20(3):282-303. doi: 10.1007/s10126-018-9820-x. Epub 2018 Apr 24. Mar Biotechnol (NY). 2018. PMID: 29691674 Review.
Cited by
-
Total Enzyme Syntheses of Napyradiomycins A1 and B1.
McKinnie SMK, Miles ZD, Jordan PA, Awakawa T, Pepper HP, Murray LAM, George JH, Moore BS. McKinnie SMK, et al. J Am Chem Soc. 2018 Dec 26;140(51):17840-17845. doi: 10.1021/jacs.8b10134. Epub 2018 Dec 14. J Am Chem Soc. 2018. PMID: 30525563 Free PMC article.
-
Tungstate-Catalyzed Biomimetic Oxidative Halogenation of (Hetero)Arene under Mild Condition.
Ma Z, Lu H, Liao K, Chen Z. Ma Z, et al. iScience. 2020 May 22;23(5):101072. doi: 10.1016/j.isci.2020.101072. Epub 2020 Apr 18. iScience. 2020. PMID: 32371372 Free PMC article.
-
Chen PY, Adak S, Chekan JR, Liscombe DK, Miyanaga A, Bernhardt P, Diethelm S, Fielding EN, George JH, Miles ZD, Murray LAM, Steele TS, Winter JM, Noel JP, Moore BS. Chen PY, et al. Biochemistry. 2022 Sep 6;61(17):1844-1852. doi: 10.1021/acs.biochem.2c00338. Epub 2022 Aug 19. Biochemistry. 2022. PMID: 35985031 Free PMC article.
-
Iodide oxidation by a novel multicopper oxidase from the alphaproteobacterium strain Q-1.
Suzuki M, Eda Y, Ohsawa S, Kanesaki Y, Yoshikawa H, Tanaka K, Muramatsu Y, Yoshikawa J, Sato I, Fujii T, Amachi S. Suzuki M, et al. Appl Environ Microbiol. 2012 Jun;78(11):3941-9. doi: 10.1128/AEM.00084-12. Epub 2012 Mar 23. Appl Environ Microbiol. 2012. PMID: 22447601 Free PMC article.
-
Rudolf JD, Chang CY. Rudolf JD, et al. Nat Prod Rep. 2020 Mar 25;37(3):425-463. doi: 10.1039/c9np00051h. Nat Prod Rep. 2020. PMID: 31650156 Free PMC article. Review.
References
-
- Butler A., Carter J. N., Simpson M. T. (2001) in Handbook of Metalloproteins (Bertini I., Sigel A., Sigel H. eds) pp. 153–179, Marcel Dekker Inc., New York
-
- Rehder D. (1991) Angew. Chem. Int. Ed. Engl. 30, 148–167
-
- Crans D. C., Smee J. J., Gaidamauskas E., Yang L. (2004) Chem. Rev. 104, 849–902 - PubMed
-
- Littlechild J., Garcia-Rodriguez E., Dalby A., Isupov M. (2002) J. Mol. Recognit. 15, 291–296 - PubMed
-
- Wever R., Hemrika W. (2001) in Handbook of Metalloproteins (Messerschmidt A., Huber R., Wieghardt K., Poulos T. eds) pp. 1417–1428, John Wiley & Sons Ltd., Chichester, United Kingdom
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources