Figure 1. Functional Connectivity of the Hippocampus along the Septotemporal Axis and Ibotenate-Induced Hippocampal Lesions Sparing Different Septotemporal Levels
(A) Schematic summary of main functional connectivity of the hippocampus, which is shown in a rat brain with midline (ml) and rhinal fissure (rf) indicated for orientation (center, drawing adapted from Figure 1A of [32]). Hippocampal connectivity is topographically organized along a septotemporal (magenta-blue) gradient. Connections decline either toward the septal pole (close to the septum) or toward the temporal pole (close to the amygdala), so that they are largely restricted to approximately one- to two-thirds starting from either pole. Thus, a differentiation into three partly overlapping domains emerges with distinct sets of connectivity: a septal and temporal region, and, between them, an intermediate region. The septotemporal topography of connectivity to the entorhinal cortex [33,127,128], the main link to visuospatial processing (top left), and to medial prefrontal cortices [–131] and subcortical sites (mediodorsal striatum and nucleus accumbens [60,132,133], the amygdala [30,118], lateral septum, and hypothalamus [31,134]), which link the hippocampus to behavioral control (i.e., emotional, motivational, sensorimotor, and executive functions) (right), is indicated by magenta-to-blue coloration corresponding to different septotemporal levels of the hippocampus. Note that, within the entorhinal cortex, connectivity to neocortical sites conveying highly processed visuospatial information [135] and the precision at which entorhinal grid cells represent visuospatial information [15,34] decline from dorsolateral to ventromedial parts (magenta to blue). Reciprocal connections with the entorhinal cortex and projections to nucleus accumbens and lateral septum are related to the entire septotemporal hippocampal axis, whereas the projections to the medial prefrontal cortex (prelimbic–infralimbic cortex) and the reciprocal connectivity with the amygdala are restricted to the intermediate and temporal hippocampus. Direct projections to hypothalamic nuclei and mediodorsal striatum largely originate from the temporal portions of the hippocampus (including temporal aspects of the intermediate region). Overall, the septal to intermediate hippocampus, via connections to the dorsolateral portions of the entorhinal cortex, are functionally associated with precise visuospatial processing underlying rapid accurate place encoding; the temporal to intermediate hippocampus, via connections to medial prefrontal cortex and subcortical sites, are functionally linked to behavioral control. A convergence of links to precise visuospatial processing and to behavioral control is essentially restricted to the intermediate hippocampus. (B) Cresyl-violet–stained coronal sections through the hippocampus (hippoc.) of exemplar brains from the five groups in experiments 1 and 2 (from left to right): sham lesion, i.e., an intact hippocampus; partial lesions, sparing continuous chunks of approximately 40% of total hippocampal volume in the intermediate region, at the temporal pole, or at the septal pole; complete hippocampal lesion, i.e., virtually no intact hippocampus (sections are arranged from anterior to posterior, with the most anterior section at the top; lesions were bilateral, but to save space, only one hemisphere is used for illustration). In the hippocampus drawings that are used to indicate the different lesion groups (in this and the following figures), white represents intact tissue, and black indicates lesioned tissue. Lesions occasionally resulted in complete removal of the targeted tissue, mainly in the complete hippocampal lesion group, but more commonly in degenerated tissue without intact neurons (outlined by stippled line). (C) Three-dimensional reconstruction of bilateral hippocampal volume prepared from the coronal sections of the brains with a sham-lesion and with the three different partial hippocampal lesions. Intact hippocampal tissue is shown in dark red. In the brains with partial hippocampal lesions, the volume of the intact (control) hippocampus is indicated in light red for comparison. Apart from the hippocampus, the brain silhouette (gray), with the midline (ml) and the rhinal fissure (rf), is shown for orientation; the silhouette is rendered transparent where it would otherwise cover the view of the hippocampus. The residual hippocampal volumes in the exemplar brains with partial hippocampal lesions shown in (B) and (C) were 41% in the intermediate region, 49% at the temporal pole, and 42% at the septal pole, respectively. In the exemplar brain with intended sparing at the septal pole, there was also some unintended sparing of a small volume (5%) at the temporal pole; this temporal sparing appears relatively large in the depicted view of the three-dimensional reconstruction, but an all-around view of the reconstruction clearly shows that it is only a very small piece of tissue. See Videos S1–S4 for an all-around view of the reconstructions.