Hox genes and vertebrate axial pattern - PubMed
- ️Mon Oct 17 9994
Review
Hox genes and vertebrate axial pattern
Deneen M Wellik. Curr Top Dev Biol. 2009.
Abstract
The axial skeleton in all vertebrates is comprised of similar structures that extend from anterior to posterior along the body axis: the occipital skull bones, cervical, thoracic, lumbar, sacral and caudal vertebrae. Despite significant changes in the number and size of these elements during vertebrate evolution, the basic character of these anatomical elements, as well as the order in which they appear, has remained strikingly similar. Extensive expression analysis, classic embryology experiments in chick and targeted loss-of-function mutant analyses in mice have clearly demonstrated that Hox genes are key regulators of morphology along the axial skeleton. The cumulative data from this work provides an emerging understanding of Hox gene function in patterning the vertebrate axial skeleton. This chapter summarizes genetic, molecular and embryologic findings on role of Hox genes in establishing axial morphology and how these combined results impact our current understanding of the 'Hox code'.
Similar articles
-
Hox patterning of the vertebrate axial skeleton.
Wellik DM. Wellik DM. Dev Dyn. 2007 Sep;236(9):2454-63. doi: 10.1002/dvdy.21286. Dev Dyn. 2007. PMID: 17685480 Review.
-
Hox patterning of the vertebrate rib cage.
McIntyre DC, Rakshit S, Yallowitz AR, Loken L, Jeannotte L, Capecchi MR, Wellik DM. McIntyre DC, et al. Development. 2007 Aug;134(16):2981-9. doi: 10.1242/dev.007567. Epub 2007 Jul 11. Development. 2007. PMID: 17626057
-
The road to the vertebral formula.
Mallo M, Vinagre T, Carapuço M. Mallo M, et al. Int J Dev Biol. 2009;53(8-10):1469-81. doi: 10.1387/ijdb.072276mm. Int J Dev Biol. 2009. PMID: 19247958 Review.
-
Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton.
Wellik DM, Capecchi MR. Wellik DM, et al. Science. 2003 Jul 18;301(5631):363-7. doi: 10.1126/science.1085672. Science. 2003. PMID: 12869760
-
Woltering JM, Vonk FJ, Müller H, Bardine N, Tuduce IL, de Bakker MA, Knöchel W, Sirbu IO, Durston AJ, Richardson MK. Woltering JM, et al. Dev Biol. 2009 Aug 1;332(1):82-9. doi: 10.1016/j.ydbio.2009.04.031. Epub 2009 May 3. Dev Biol. 2009. PMID: 19409887
Cited by
-
Buckley D, Molnár V, Németh G, Petneházy O, Vörös J. Buckley D, et al. Front Zool. 2013 Apr 11;10(1):17. doi: 10.1186/1742-9994-10-17. Front Zool. 2013. PMID: 23577917 Free PMC article.
-
Global control of motor neuron topography mediated by the repressive actions of a single hox gene.
Jung H, Lacombe J, Mazzoni EO, Liem KF Jr, Grinstein J, Mahony S, Mukhopadhyay D, Gifford DK, Young RA, Anderson KV, Wichterle H, Dasen JS. Jung H, et al. Neuron. 2010 Sep 9;67(5):781-96. doi: 10.1016/j.neuron.2010.08.008. Neuron. 2010. PMID: 20826310 Free PMC article.
-
Hox genes and kidney development.
Wellik DM. Wellik DM. Pediatr Nephrol. 2011 Sep;26(9):1559-65. doi: 10.1007/s00467-011-1902-1. Epub 2011 May 8. Pediatr Nephrol. 2011. PMID: 21553325 Review.
-
Dezaki ES, Yaghoobi MM, Taheri E, Almani PG, Tohidi F, Gottstein B, Harandi MF. Dezaki ES, et al. Korean J Parasitol. 2016 Oct;54(5):653-658. doi: 10.3347/kjp.2016.54.5.653. Epub 2016 Oct 31. Korean J Parasitol. 2016. PMID: 27853123 Free PMC article.
-
Hox targets and cellular functions.
Sánchez-Herrero E. Sánchez-Herrero E. Scientifica (Cairo). 2013;2013:738257. doi: 10.1155/2013/738257. Epub 2013 Dec 30. Scientifica (Cairo). 2013. PMID: 24490109 Free PMC article.