I-BAR domains, IRSp53 and filopodium formation - PubMed
Review
I-BAR domains, IRSp53 and filopodium formation
Sohail Ahmed et al. Semin Cell Dev Biol. 2010 Jun.
Abstract
Filopodia and lamellipodia are dynamic actin-based structures that determine cell shape and migration. Filopodia are thought to sense the environment and direct processes such as axon guidance and neurite outgrowth. Cdc42 is a small GTP-binding protein and member of the RhoGTPase family. Cdc42 and its effector IRSp53 (insulin receptor phosphotyrosine 53 kDa substrate) have been shown to be strong inducers of filopodium formation. IRSp53 consists of an I-BAR (inverse-Bin-Amphiphysin-Rvs) domain, a Cdc42-binding domain and an SH3 domain. The I-BAR domain of IRSp53 induces membrane tubulation of vesicles and dynamic membrane protrusions lacking actin in cells. The IRSp53 SH3 domain interacts with proteins that regulate actin filament formation e.g. Mena, N-WASP, mDia1 and Eps8. In this review we suggest that the mechanism for Cdc42-driven filopodium formation involves coupling I-BAR domain-induced membrane protrusion with SH3 domain-mediated actin dynamics through IRSp53.
(c) 2009 Elsevier Ltd. All rights reserved.
Similar articles
-
The Cdc42 effector IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics.
Lim KB, Bu W, Goh WI, Koh E, Ong SH, Pawson T, Sudhaharan T, Ahmed S. Lim KB, et al. J Biol Chem. 2008 Jul 18;283(29):20454-72. doi: 10.1074/jbc.M710185200. Epub 2008 Apr 29. J Biol Chem. 2008. PMID: 18448434
-
Robens JM, Yeow-Fong L, Ng E, Hall C, Manser E. Robens JM, et al. Mol Cell Biol. 2010 Feb;30(3):829-44. doi: 10.1128/MCB.01574-08. Epub 2009 Nov 23. Mol Cell Biol. 2010. PMID: 19933840 Free PMC article.
-
Goh WI, Lim KB, Sudhaharan T, Sem KP, Bu W, Chou AM, Ahmed S. Goh WI, et al. J Biol Chem. 2012 Feb 10;287(7):4702-14. doi: 10.1074/jbc.M111.305102. Epub 2011 Dec 17. J Biol Chem. 2012. PMID: 22179776 Free PMC article.
-
Subcellular membrane curvature mediated by the BAR domain superfamily proteins.
Suetsugu S, Toyooka K, Senju Y. Suetsugu S, et al. Semin Cell Dev Biol. 2010 Jun;21(4):340-9. doi: 10.1016/j.semcdb.2009.12.002. Epub 2009 Dec 4. Semin Cell Dev Biol. 2010. PMID: 19963073 Review.
-
Synergistic BAR-NPF interactions in actin-driven membrane remodeling.
Suetsugu S, Gautreau A. Suetsugu S, et al. Trends Cell Biol. 2012 Mar;22(3):141-50. doi: 10.1016/j.tcb.2012.01.001. Epub 2012 Feb 3. Trends Cell Biol. 2012. PMID: 22306177 Review.
Cited by
-
Biomechanical Aspects of Actin Bundle Dynamics.
Lange J, Bernitt E, Döbereiner HG. Lange J, et al. Front Cell Dev Biol. 2020 Jun 9;8:422. doi: 10.3389/fcell.2020.00422. eCollection 2020. Front Cell Dev Biol. 2020. PMID: 32582705 Free PMC article.
-
IRSp53 promotes postsynaptic density formation and actin filament bundling.
Feng Z, Lee S, Jia B, Jian T, Kim E, Zhang M. Feng Z, et al. J Cell Biol. 2022 Aug 1;221(8):e202105035. doi: 10.1083/jcb.202105035. Epub 2022 Jul 12. J Cell Biol. 2022. PMID: 35819332 Free PMC article.
-
Postsynaptic distribution of IRSp53 in spiny excitatory and inhibitory neurons.
Burette AC, Park H, Weinberg RJ. Burette AC, et al. J Comp Neurol. 2014 Jun 15;522(9):2164-78. doi: 10.1002/cne.23526. J Comp Neurol. 2014. PMID: 24639075 Free PMC article.
-
Cheng CY, Mruk DD. Cheng CY, et al. Biochem J. 2011 May 1;435(3):553-62. doi: 10.1042/BJ20102121. Biochem J. 2011. PMID: 21486226 Free PMC article. Review.
-
Regulation of blood-testis barrier dynamics by the mTORC1/rpS6 signaling complex: An in vitro study.
Li LX, Wu SW, Yan M, Lian QQ, Ge RS, Cheng CY. Li LX, et al. Asian J Androl. 2019 Jul-Aug;21(4):365-375. doi: 10.4103/aja.aja_126_18. Asian J Androl. 2019. PMID: 30829292 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous