Multicenter evaluation of a novel nanoparticle immunoassay for 5-fluorouracil on the Olympus AU400 analyzer - PubMed
Comparative Study
doi: 10.1519/JSC.0b013e3181b866d0.
M Boisdron-Celle, William Clarke, Jodi B Courtney, Merrill J Egorin, Erick Gamelin, Rebecca L Harney, Catherine Hammett-Stabler, Sandy Lepp, Yunying Li, Gregory D Lundell, Gwen McMillin, Gerard Milano, Salvatore J Salamone
Affiliations
- PMID: 19935361
- DOI: 10.1519/JSC.0b013e3181b866d0
Comparative Study
Multicenter evaluation of a novel nanoparticle immunoassay for 5-fluorouracil on the Olympus AU400 analyzer
Jan H Beumer et al. Ther Drug Monit. 2009 Dec.
Abstract
Background: 5-Fluorouracil (5-FU) is the most widely used chemotherapy drug, primarily against gastrointestinal, head and neck, and breast cancers. 5-FU has large pharmacokinetic variability resulting in unexpected toxicity or ineffective treatment. Therapeutic drug management of 5-FU minimizes toxicity and improves outcome. A nanoparticle-based immunoassay was developed to provide oncologists with a rapid, cost-effective tool for determining 5-FU plasma concentrations.
Methods: Monoclonal antibodies, bound to nanoparticles, were used to develop an immunoassay for the Olympus AU400. Assay precision, linearity, calibration stability, and limit of detection were run at multiple centers; interference, cross-reactivity, lower limit of quantitation and recovery at 1 center. Clinical samples collected from 4 cancer centers were analyzed for 5-FU concentrations by liquid chromatography-tandem mass spectrometry and compared with the immunoassay results.
Results: With calibrators from 0 to 1800 ng/mL 5-FU and autodilution, concentrations up to 9000 ng/mL could be determined. Time to first result was 10 minutes, and 400 samples per hour could be quantitated from a standard curve stored for >30 days. Imprecision across all laboratories was <5%, and the assay was linear upon dilution over the entire range. Cross-reactivities for dihydro-5-FU, uracil, capecitabine, and tegafur were <1%, 9.9%, 0.05%, and 0.23%, respectively. The limit of detection was 52 ng/mL with a lower limit of quantitation of 86 ng/mL. Assay results of clinical samples (93-1774 ng/mL) correlated with liquid chromatography-tandem mass spectrometry results: (R = 0.9860, slope 1.035, intercept 10.87 ng/mL).
Conclusions: This novel immunoassay is suitable for quantitating 5-FU plasma concentrations with advantages of speed, small sample size, minimal sample pretreatment, and application on automated instrumentation. These advantages enable efficient therapeutic drug management of 5-FU in clinical practice.
Similar articles
-
Cline DJ, Zhang H, Lundell GD, Harney RL, Riaz HK, Jarrah J, Li Y, Miyazaki M, Courtney JB, Baburina I, Salamone SJ. Cline DJ, et al. Ther Drug Monit. 2013 Dec;35(6):803-8. doi: 10.1097/FTD.0b013e31829617ea. Ther Drug Monit. 2013. PMID: 24263639
-
Cline DJ, Zhang H, Lundell GD, Harney RL, Riaz HK, Jarrah J, Li Y, Miyazaki M, Courtney JB, Baburina I, Salamone SJ. Cline DJ, et al. Ther Drug Monit. 2013 Dec;35(6):809-15. doi: 10.1097/FTD.0b013e318296be01. Ther Drug Monit. 2013. PMID: 24263640
-
Kosovec JE, Egorin MJ, Gjurich S, Beumer JH. Kosovec JE, et al. Rapid Commun Mass Spectrom. 2008;22(2):224-30. doi: 10.1002/rcm.3362. Rapid Commun Mass Spectrom. 2008. PMID: 18085512
-
A review of analytical methods for the determination of 5-fluorouracil in biological matrices.
Breda M, Barattè S. Breda M, et al. Anal Bioanal Chem. 2010 Jun;397(3):1191-201. doi: 10.1007/s00216-010-3633-8. Epub 2010 Apr 11. Anal Bioanal Chem. 2010. PMID: 20383700 Review.
-
[Review of pharmacokinetic monitoring of 5-Fluorouracil as a tool to increase efficacy and safety].
Matus-Santos JA, Aguilar-Ponce JL, Lara-Medina FU, Herrera-Gómez Á, Meneses-García A, López-Gamboa M. Matus-Santos JA, et al. Rev Med Inst Mex Seguro Soc. 2016 May-Jun;54(3):354-62. Rev Med Inst Mex Seguro Soc. 2016. PMID: 27100982 Review. Spanish.
Cited by
-
Treschow AF, Valente MJ, Lauschke K, Holst B, Andersen AR, Vinggaard AM. Treschow AF, et al. Arch Toxicol. 2024 Apr;98(4):1209-1224. doi: 10.1007/s00204-023-03675-1. Epub 2024 Feb 4. Arch Toxicol. 2024. PMID: 38311648 Free PMC article.
-
Therapeutic drug monitoring for cytotoxic anticancer drugs: Principles and evidence-based practices.
Smita P, Narayan PA, J K, Gaurav P. Smita P, et al. Front Oncol. 2022 Dec 8;12:1015200. doi: 10.3389/fonc.2022.1015200. eCollection 2022. Front Oncol. 2022. PMID: 36568145 Free PMC article. Review.
-
Ma Y, Lin Y, Zou B, Liu W, Zhang Y, Zhao L, Huang Y, Yang Y, Fang W, Zhao Y, Sheng J, Qin T, Hu Z, Salamone SJ, Li Y, Zhang L, Zhao H. Ma Y, et al. Clin Pharmacokinet. 2016 Oct;55(10):1205-1216. doi: 10.1007/s40262-016-0395-2. Clin Pharmacokinet. 2016. PMID: 27138786 Clinical Trial.
-
Influence of the skeletal muscle index on pharmacokinetics and toxicity of fluorouracil.
Schmulenson E, Zimmermann N, Müller L, Kapsa S, Sihinevich I, Jaehde U. Schmulenson E, et al. Cancer Med. 2023 Feb;12(3):2580-2589. doi: 10.1002/cam4.5118. Epub 2022 Aug 8. Cancer Med. 2023. PMID: 35941837 Free PMC article.
-
Akune Y, Yamada M, Shigeyasu C. Akune Y, et al. Jpn J Ophthalmol. 2018 Jul;62(4):432-437. doi: 10.1007/s10384-018-0603-8. Epub 2018 Jun 21. Jpn J Ophthalmol. 2018. PMID: 29931401
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources