Field-theoretic simulations in the Gibbs ensemble - PubMed
- ️Fri Jan 01 2010
. 2010 Jan 14;132(2):024104.
doi: 10.1063/1.3292004.
Affiliations
- PMID: 20095660
- DOI: 10.1063/1.3292004
Field-theoretic simulations in the Gibbs ensemble
Robert A Riggleman et al. J Chem Phys. 2010.
Abstract
Calculating phase diagrams and measuring the properties of multiple phases in equilibrium is one of the most common applications of field-theoretic simulations. Such a simulation often attempts to simulate two phases in equilibrium with each other in the same simulation box. This is a computationally demanding approach because it is necessary to perform a large enough simulation so that the interface between the two phases does not affect the estimate of the bulk properties of the phases of interest. In this paper, we describe an efficient method for performing field-theoretic simulations in the Gibbs ensemble, a familiar construct in particle-based simulations where two phases in equilibrium with each other are simulated in separate simulation boxes. Chemical and mechanical equilibrium is maintained by allowing the simulation boxes to swap both chemical species and volume. By fixing the total number of each chemical species and the total volume, the Gibbs ensemble allows for the efficient simulation of two bulk phases at equilibrium in the canonical ensemble. After providing the theoretical framework for field-theoretic simulations in the Gibbs ensemble, we demonstrate the method on two two-dimensional model polymer test systems in both the mean-field limit (self-consistent field theory) and in the fluctuating field theory.
Similar articles
-
Puibasset J. Puibasset J. J Chem Phys. 2005 Apr 1;122(13):134710. doi: 10.1063/1.1867376. J Chem Phys. 2005. PMID: 15847492
-
Jiang W, Wang Y. Jiang W, et al. J Chem Phys. 2004 Aug 22;121(8):3905-13. doi: 10.1063/1.1777223. J Chem Phys. 2004. PMID: 15303959
-
Hansen N, Jakobtorweihen S, Keil FJ. Hansen N, et al. J Chem Phys. 2005 Apr 22;122(16):164705. doi: 10.1063/1.1884108. J Chem Phys. 2005. PMID: 15945697
-
On the use of Bennett's acceptance ratio method in multi-canonical-type simulations.
Fenwick MK, Escobedo FA. Fenwick MK, et al. J Chem Phys. 2004 Feb 15;120(7):3066-74. doi: 10.1063/1.1641000. J Chem Phys. 2004. PMID: 15268459
Cited by
-
The proline-rich domain promotes Tau liquid-liquid phase separation in cells.
Zhang X, Vigers M, McCarty J, Rauch JN, Fredrickson GH, Wilson MZ, Shea JE, Han S, Kosik KS. Zhang X, et al. J Cell Biol. 2020 Nov 2;219(11):e202006054. doi: 10.1083/jcb.202006054. J Cell Biol. 2020. PMID: 32997736 Free PMC article.
-
Field-Theoretic Simulations for Block Copolymer Melts Using the Partial Saddle-Point Approximation.
Matsen MW, Beardsley TM. Matsen MW, et al. Polymers (Basel). 2021 Jul 24;13(15):2437. doi: 10.3390/polym13152437. Polymers (Basel). 2021. PMID: 34372040 Free PMC article. Review.
-
Phase Separation, Reaction Equilibrium, and Self-Assembly in Binary Telechelic Homopolymer Blends.
Vigil DL, Zhang A, Delaney KT, Fredrickson GH. Vigil DL, et al. Macromolecules. 2023 Dec 13;56(24):9994-10005. doi: 10.1021/acs.macromol.3c01653. eCollection 2023 Dec 26. Macromolecules. 2023. PMID: 38161325 Free PMC article.
-
Small ion effects on self-coacervation phenomena in block polyampholytes.
Danielsen SPO, McCarty J, Shea JE, Delaney KT, Fredrickson GH. Danielsen SPO, et al. J Chem Phys. 2019 Jul 21;151(3):034904. doi: 10.1063/1.5109045. J Chem Phys. 2019. PMID: 31325933 Free PMC article.
-
Complete Phase Diagram for Liquid-Liquid Phase Separation of Intrinsically Disordered Proteins.
McCarty J, Delaney KT, Danielsen SPO, Fredrickson GH, Shea JE. McCarty J, et al. J Phys Chem Lett. 2019 Apr 18;10(8):1644-1652. doi: 10.1021/acs.jpclett.9b00099. Epub 2019 Mar 27. J Phys Chem Lett. 2019. PMID: 30873835 Free PMC article.
LinkOut - more resources
Full Text Sources