Evolutionary optimization of peptide substrates for proteases that exhibit rapid hydrolysis kinetics - PubMed
- ️Fri Jan 01 2010
. 2010 Jun 15;106(3):339-46.
doi: 10.1002/bit.22693.
Affiliations
- PMID: 20148412
- DOI: 10.1002/bit.22693
Evolutionary optimization of peptide substrates for proteases that exhibit rapid hydrolysis kinetics
Kevin T Boulware et al. Biotechnol Bioeng. 2010.
Abstract
Protease cleavage site recognition motifs can be identified using protease substrate discovery methodologies, but typically exhibit non-optimal specificity and activity. To enable evolutionary optimization of substrate cleavage kinetics, a two-color cellular library of peptide substrates (CLiPS) methodology was developed. Two-color CLiPS was applied to identify peptide substrates for the tobacco etch virus (TEV) protease from a random pentapeptide library, which were then optimized by screening of a focused, extended substrate library. Quantitative library screening yielded seven amino acid substrates exhibiting rapid hydrolysis by TEV protease and high sequence similarity to the native seven-amino-acid substrate, with a strong consensus of EXLYPhiQG. Comparison of hydrolysis rates for a family of closely related substrates indicates that the native seven-residue TEV substrate co-evolved with TEV protease to facilitate highly efficient hydrolysis. Consensus motifs revealed by screening enabled database identification of a family of related, putative viral protease substrates. More generally, our results suggest that substrate evolution using CLiPS may be useful for optimizing substrate selectivity and activity to enable the design of more effective protease activity probes, molecular imaging agents, and prodrugs.
2010 Wiley Periodicals, Inc.
Similar articles
-
Comparison of the substrate specificity of two potyvirus proteases.
Tözsér J, Tropea JE, Cherry S, Bagossi P, Copeland TD, Wlodawer A, Waugh DS. Tözsér J, et al. FEBS J. 2005 Jan;272(2):514-23. doi: 10.1111/j.1742-4658.2004.04493.x. FEBS J. 2005. PMID: 15654889
-
Nunn CM, Jeeves M, Cliff MJ, Urquhart GT, George RR, Chao LH, Tscuchia Y, Djordjevic S. Nunn CM, et al. J Mol Biol. 2005 Jul 1;350(1):145-55. doi: 10.1016/j.jmb.2005.04.013. J Mol Biol. 2005. PMID: 15919091
-
The P1' specificity of tobacco etch virus protease.
Kapust RB, Tözsér J, Copeland TD, Waugh DS. Kapust RB, et al. Biochem Biophys Res Commun. 2002 Jun 28;294(5):949-55. doi: 10.1016/S0006-291X(02)00574-0. Biochem Biophys Res Commun. 2002. PMID: 12074568
-
Methods for mapping protease specificity.
Diamond SL. Diamond SL. Curr Opin Chem Biol. 2007 Feb;11(1):46-51. doi: 10.1016/j.cbpa.2006.11.021. Epub 2006 Dec 6. Curr Opin Chem Biol. 2007. PMID: 17157549 Review.
-
Proteomic techniques and activity-based probes for the system-wide study of proteolysis.
auf dem Keller U, Schilling O. auf dem Keller U, et al. Biochimie. 2010 Nov;92(11):1705-14. doi: 10.1016/j.biochi.2010.04.027. Epub 2010 May 20. Biochimie. 2010. PMID: 20493233 Review.
Cited by
-
An overview of enzymatic reagents for the removal of affinity tags.
Waugh DS. Waugh DS. Protein Expr Purif. 2011 Dec;80(2):283-93. doi: 10.1016/j.pep.2011.08.005. Epub 2011 Aug 19. Protein Expr Purif. 2011. PMID: 21871965 Free PMC article. Review.
-
Miles LA, Brennen WN, Rudin CM, Poirier JT. Miles LA, et al. PLoS One. 2015 Jun 12;10(6):e0129103. doi: 10.1371/journal.pone.0129103. eCollection 2015. PLoS One. 2015. PMID: 26069962 Free PMC article.
-
Mertz M, Castiglione K. Mertz M, et al. Int J Mol Sci. 2021 Jul 1;22(13):7134. doi: 10.3390/ijms22137134. Int J Mol Sci. 2021. PMID: 34281201 Free PMC article.
-
Kostallas G, Löfdahl PÅ, Samuelson P. Kostallas G, et al. PLoS One. 2011 Jan 18;6(1):e16136. doi: 10.1371/journal.pone.0016136. PLoS One. 2011. PMID: 21267463 Free PMC article.
-
Jabaiah A, Daugherty PS. Jabaiah A, et al. Chem Biol. 2011 Mar 25;18(3):392-401. doi: 10.1016/j.chembiol.2010.12.017. Chem Biol. 2011. PMID: 21439484 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources