Hub promiscuity in protein-protein interaction networks - PubMed
- ️Fri Jan 01 2010
Review
Hub promiscuity in protein-protein interaction networks
Ashwini Patil et al. Int J Mol Sci. 2010.
Erratum in
- Int J Mol Sci. 2010;11(8):2791
Abstract
Hubs are proteins with a large number of interactions in a protein-protein interaction network. They are the principal agents in the interaction network and affect its function and stability. Their specific recognition of many different protein partners is of great interest from the structural viewpoint. Over the last few years, the structural properties of hubs have been extensively studied. We review the currently known features that are particular to hubs, possibly affecting their binding ability. Specifically, we look at the levels of intrinsic disorder, surface charge and domain distribution in hubs, as compared to non-hubs, along with differences in their functional domains.
Keywords: hubs; interaction networks; promiscuous binding; protein-protein interactions.
Figures

Partial human protein-protein interaction network showing scale-free topology. Hubs (proteins with 5 or more interactions) and non-hubs are denoted by red and green nodes, respectively. Interactions are shown by the black links between the nodes.

(a) NMR solution structure of Calmodulin showing the relative motion of one Ca2+ binding domain (green) with respect to the other using the flexibility of the central disordered region (red) (PDB ID: 1DMO). (b) X-RAY Crystal structure of a small fragment of the N-terminal disordered region of p53 (red) bound to MDM2 (blue) (PDB ID: 1YCQ).

Surface electrostatic potential of Cofilin (obtained from eF-site [54]) (PDB ID: 1QPV). Negative potential is indicated in red, positive potential in blue and hydropathy in yellow.

Ishikawa (Fishbone) diagram representing the characteristics affecting the interaction promiscuity in hub proteins.
Similar articles
-
Domain distribution and intrinsic disorder in hubs in the human protein-protein interaction network.
Patil A, Kinoshita K, Nakamura H. Patil A, et al. Protein Sci. 2010 Aug;19(8):1461-8. doi: 10.1002/pro.425. Protein Sci. 2010. PMID: 20509167 Free PMC article.
-
Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes.
Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Radivojac P, Uversky VN, Vidal M, Iakoucheva LM. Haynes C, et al. PLoS Comput Biol. 2006 Aug 4;2(8):e100. doi: 10.1371/journal.pcbi.0020100. Epub 2006 Jun 23. PLoS Comput Biol. 2006. PMID: 16884331 Free PMC article.
-
Flexible nets. The roles of intrinsic disorder in protein interaction networks.
Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN. Dunker AK, et al. FEBS J. 2005 Oct;272(20):5129-48. doi: 10.1111/j.1742-4658.2005.04948.x. FEBS J. 2005. PMID: 16218947 Review.
-
Kiran M, Nagarajaram HA. Kiran M, et al. Mol Biosyst. 2016 Aug 16;12(9):2875-82. doi: 10.1039/c6mb00104a. Mol Biosyst. 2016. PMID: 27400769
-
On the functional and structural characterization of hubs in protein-protein interaction networks.
Bertolazzi P, Bock ME, Guerra C. Bertolazzi P, et al. Biotechnol Adv. 2013 Mar-Apr;31(2):274-86. doi: 10.1016/j.biotechadv.2012.12.002. Epub 2012 Dec 8. Biotechnol Adv. 2013. PMID: 23228981 Review.
Cited by
-
High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder.
Peng Z, Kurgan L. Peng Z, et al. Nucleic Acids Res. 2015 Oct 15;43(18):e121. doi: 10.1093/nar/gkv585. Epub 2015 Jun 24. Nucleic Acids Res. 2015. PMID: 26109352 Free PMC article.
-
Multiple Forms of Multifunctional Proteins in Health and Disease.
Espinosa-Cantú A, Cruz-Bonilla E, Noda-Garcia L, DeLuna A. Espinosa-Cantú A, et al. Front Cell Dev Biol. 2020 Jun 10;8:451. doi: 10.3389/fcell.2020.00451. eCollection 2020. Front Cell Dev Biol. 2020. PMID: 32587857 Free PMC article. Review.
-
Presence and structure-activity relationship of intrinsically disordered regions across mucins.
Carmicheal J, Atri P, Sharma S, Kumar S, Chirravuri Venkata R, Kulkarni P, Salgia R, Ghersi D, Kaur S, Batra SK. Carmicheal J, et al. FASEB J. 2020 Feb;34(2):1939-1957. doi: 10.1096/fj.201901898RR. Epub 2020 Jan 5. FASEB J. 2020. PMID: 31908009 Free PMC article.
-
Evolution of In Silico Strategies for Protein-Protein Interaction Drug Discovery.
Macalino SJY, Basith S, Clavio NAB, Chang H, Kang S, Choi S. Macalino SJY, et al. Molecules. 2018 Aug 6;23(8):1963. doi: 10.3390/molecules23081963. Molecules. 2018. PMID: 30082644 Free PMC article. Review.
-
Fornili A, Pandini A, Lu HC, Fraternali F. Fornili A, et al. J Chem Theory Comput. 2013 Nov 12;9(11):5127-5147. doi: 10.1021/ct400486p. Epub 2013 Sep 27. J Chem Theory Comput. 2013. PMID: 24250278 Free PMC article.
References
-
- Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000;403:623–627. - PubMed
-
- Gavin A-C, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon A-M, Cruciat C-M, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier M-A, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002;415:141–147. - PubMed
-
- Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams S-L, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CWV, Figeys D, Tyers M. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002;415:180–183. - PubMed
-
- Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M, Voss E, Furtak K, Renzulli R, Aanensen N, Carrolla S, Bickelhaupt E, Lazovatsky Y, DaSilva A, Zhong J, Stanyon CA, Finley RL, Jr, White KP, Braverman M, Jarvie T, Gold S, Leach M, Knight J, Shimkets RA, McKenna MP, Chant J, Rothberg JM. A protein interaction map of Drosophila melanogaster. Science. 2003;302:1727–1736. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources