Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif - PubMed
- ️Fri Jan 01 2010
Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif
Ivan Matic et al. Mol Cell. 2010.
Free article
Abstract
Reversible protein modification by small ubiquitin-like modifiers (SUMOs) is critical for eukaryotic life. Mass spectrometry-based proteomics has proven effective at identifying hundreds of potential SUMO target proteins. However, direct identification of SUMO acceptor lysines in complex samples by mass spectrometry is still very challenging. We have developed a generic method for the identification of SUMO acceptor lysines in target proteins. We have identified 103 SUMO-2 acceptor lysines in endogenous target proteins. Of these acceptor lysines, 76 are situated in the SUMOylation consensus site [VILMFPC]KxE. Interestingly, eight sites fit the inverted SUMOylation consensus motif [ED]xK[VILFP]. In addition, we found direct mass spectrometric evidence for crosstalk between SUMOylation and phosphorylation with a preferred spacer between the SUMOylated lysine and the phosphorylated serine of four residues. In 16 proteins we identified a hydrophobic cluster SUMOylation motif (HCSM). SUMO conjugation of RanGAP1 and ZBTB1 via HCSMs is remarkably efficient.
Copyright (c) 2010 Elsevier Inc. All rights reserved.
Similar articles
-
SUMO assay with peptide arrays on solid support: insights into SUMO target sites.
Schwamborn K, Knipscheer P, van Dijk E, van Dijk WJ, Sixma TK, Meloen RH, Langedijk JP. Schwamborn K, et al. J Biochem. 2008 Jul;144(1):39-49. doi: 10.1093/jb/mvn039. Epub 2008 Mar 15. J Biochem. 2008. PMID: 18344540
-
Identification of SUMO target proteins by quantitative proteomics.
Andersen JS, Matic I, Vertegaal AC. Andersen JS, et al. Methods Mol Biol. 2009;497:19-31. doi: 10.1007/978-1-59745-566-4_2. Methods Mol Biol. 2009. PMID: 19107408 Review.
-
SUMO regulates the cytoplasmonuclear transport of its target protein Daxx.
Chen A, Wang PY, Yang YC, Huang YH, Yeh JJ, Chou YH, Cheng JT, Hong YR, Li SS. Chen A, et al. J Cell Biochem. 2006 Jul 1;98(4):895-911. doi: 10.1002/jcb.20703. J Cell Biochem. 2006. PMID: 16475184
-
Okada S, Nagabuchi M, Takamura Y, Nakagawa T, Shinmyozu K, Nakayama J, Tanaka K. Okada S, et al. Plant Cell Physiol. 2009 Jun;50(6):1049-61. doi: 10.1093/pcp/pcp056. Epub 2009 Apr 17. Plant Cell Physiol. 2009. PMID: 19376783
-
Filosa G, Barabino SM, Bachi A. Filosa G, et al. Neuromolecular Med. 2013 Dec;15(4):661-76. doi: 10.1007/s12017-013-8256-8. Epub 2013 Aug 25. Neuromolecular Med. 2013. PMID: 23979992 Review.
Cited by
-
SUMOylation of pancreatic glucokinase regulates its cellular stability and activity.
Aukrust I, Bjørkhaug L, Negahdar M, Molnes J, Johansson BB, Müller Y, Haas W, Gygi SP, Søvik O, Flatmark T, Kulkarni RN, Njølstad PR. Aukrust I, et al. J Biol Chem. 2013 Feb 22;288(8):5951-62. doi: 10.1074/jbc.M112.393769. Epub 2013 Jan 7. J Biol Chem. 2013. PMID: 23297408 Free PMC article.
-
Oh Y, Chung KC. Oh Y, et al. J Biol Chem. 2012 May 18;287(21):17517-17529. doi: 10.1074/jbc.M111.336354. Epub 2012 Mar 30. J Biol Chem. 2012. PMID: 22467880 Free PMC article.
-
Zhang H, Luo J. Zhang H, et al. Small GTPases. 2016 Apr 2;7(2):39-46. doi: 10.1080/21541248.2016.1161698. Epub 2016 Apr 8. Small GTPases. 2016. PMID: 27057691 Free PMC article. Review.
-
Proteomic Approaches to Dissect Host SUMOylation during Innate Antiviral Immune Responses.
Lork M, Lieber G, Hale BG. Lork M, et al. Viruses. 2021 Mar 23;13(3):528. doi: 10.3390/v13030528. Viruses. 2021. PMID: 33806893 Free PMC article. Review.
-
Leyva MJ, Kim YS, Peach ML, Schneekloth JS Jr. Leyva MJ, et al. Bioorg Med Chem Lett. 2015;25(10):2146-51. doi: 10.1016/j.bmcl.2015.03.069. Epub 2015 Mar 31. Bioorg Med Chem Lett. 2015. PMID: 25881829 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases