Unresolved molecular phylogenies of gibbons and siamangs (Family: Hylobatidae) based on mitochondrial, Y-linked, and X-linked loci indicate a rapid Miocene radiation or sudden vicariance event - PubMed
- ️Invalid Date
Unresolved molecular phylogenies of gibbons and siamangs (Family: Hylobatidae) based on mitochondrial, Y-linked, and X-linked loci indicate a rapid Miocene radiation or sudden vicariance event
H Israfil et al. Mol Phylogenet Evol. 2011 Mar.
Abstract
According to recent taxonomic reclassification, the primate family Hylobatidae contains four genera (Hoolock, Nomascus, Symphalangus, and Hylobates) and between 14 and 18 species, making it by far the most species-rich group of extant hominoids. Known as the "small apes", these small arboreal primates are distributed throughout Southeast, South and East Asia. Considerable uncertainty surrounds the phylogeny of extant hylobatids, particularly the relationships among the genera and the species within the Hylobates genus. In this paper we use parsimony, likelihood, and Bayesian methods to analyze a dataset containing nearly 14 kilobase pairs, which includes newly collected sequences from X-linked, Y-linked, and mitochondrial loci together with data from previous mitochondrial studies. Parsimony, likelihood, and Bayesian analyses largely failed to find a significant difference among phylogenies with any of the four genera as the most basal taxon. All analyses, however, support a tree with Hylobates and Symphalangus as most closely related genera. One strongly supported phylogenetic result within the Hylobates genus is that Hylobates pileatus is the most basal taxon. Multiple analyses failed to find significant support for any singular genus-level phylogeny. While it is natural to suspect that there might not be sufficient data for phylogenetic resolution (whenever that situation occurs), an alternative hypothesis relating to the nature of gibbon speciation exists. This lack of resolution may be the result of a rapid radiation or a sudden vicariance event of the hylobatid genera, and it is likely that a similarly rapid radiation occurred within the Hylobates genus. Additional molecular and paleontological evidence are necessary to better test among these, and other, hypotheses of hylobatid evolution.
Copyright © 2010 Elsevier Inc. All rights reserved.
Figures

Bootstrap consensus cladogram using maximum parsimony.

Bootstrap consensus phylogram using maximum likelihood. Bootstrap values appear above branches leading to nodes except within most Hylobates nodes, where they appear to the right of the node. A cladogram that has collapsed the branches of <50% bootsrap support appears in Supplementary Materials Figure 4.

Phylogram estimated using Bayesian phylogenetics. Posterior probability values appear above branches leading to nodes except within most Hylobates nodes, where they appear to the right of the node.

Tree scaled to the molecular clock dates of each node. Numbers at nodes indicate the 95% Bayesian credibility interval from the posterior distribution. Three calibrations nodes are indicated with a ‘C=’ within brackets. The dates following the ‘C=’ correspond to the lower (2.5%) and upper (97.5%) bounds of the calibration prior distribution. Other parameter estimates given in Supplementary Materials. All dates are in Ma.
Similar articles
-
Matsudaira K, Ishida T. Matsudaira K, et al. Mol Phylogenet Evol. 2010 May;55(2):454-9. doi: 10.1016/j.ympev.2010.01.032. Epub 2010 Feb 4. Mol Phylogenet Evol. 2010. PMID: 20138221
-
An Alu-based phylogeny of gibbons (hylobatidae).
Meyer TJ, McLain AT, Oldenburg JM, Faulk C, Bourgeois MG, Conlin EM, Mootnick AR, de Jong PJ, Roos C, Carbone L, Batzer MA. Meyer TJ, et al. Mol Biol Evol. 2012 Nov;29(11):3441-50. doi: 10.1093/molbev/mss149. Epub 2012 Jun 7. Mol Biol Evol. 2012. PMID: 22683814 Free PMC article.
-
Mitochondrial genome sequences effectively reveal the phylogeny of Hylobates gibbons.
Chan YC, Roos C, Inoue-Murayama M, Inoue E, Shih CC, Pei KJ, Vigilant L. Chan YC, et al. PLoS One. 2010 Dec 23;5(12):e14419. doi: 10.1371/journal.pone.0014419. PLoS One. 2010. PMID: 21203450 Free PMC article.
-
Veeramah KR, Woerner AE, Johnstone L, Gut I, Gut M, Marques-Bonet T, Carbone L, Wall JD, Hammer MF. Veeramah KR, et al. Genetics. 2015 May;200(1):295-308. doi: 10.1534/genetics.115.174425. Epub 2015 Mar 12. Genetics. 2015. PMID: 25769979 Free PMC article.
-
Shi CM, Yang Z. Shi CM, et al. Mol Biol Evol. 2018 Jan 1;35(1):159-179. doi: 10.1093/molbev/msx277. Mol Biol Evol. 2018. PMID: 29087487 Free PMC article.
Cited by
-
Ortiz A, Pilbrow V, Villamil CI, Korsgaard JG, Bailey SE, Harrison T. Ortiz A, et al. PLoS One. 2015 Jul 8;10(7):e0131206. doi: 10.1371/journal.pone.0131206. eCollection 2015. PLoS One. 2015. PMID: 26154175 Free PMC article.
-
Chan YC, Roos C, Inoue-Murayama M, Inoue E, Shih CC, Pei KJ, Vigilant L. Chan YC, et al. BMC Evol Biol. 2013 Apr 12;13:82. doi: 10.1186/1471-2148-13-82. BMC Evol Biol. 2013. PMID: 23586586 Free PMC article.
-
Incomplete lineage sorting is common in extant gibbon genera.
Wall JD, Kim SK, Luca F, Carbone L, Mootnick AR, de Jong PJ, Di Rienzo A. Wall JD, et al. PLoS One. 2013;8(1):e53682. doi: 10.1371/journal.pone.0053682. Epub 2013 Jan 14. PLoS One. 2013. PMID: 23341974 Free PMC article.
-
Sariyati NH, Abdul-Latiff MAB, Aifat NR, Mohd-Ridwan AR, Osman NA, Karuppannan KV, Chan E, Md-Zain BM. Sariyati NH, et al. Biodivers Data J. 2024 Apr 25;12:e120314. doi: 10.3897/BDJ.12.e120314. eCollection 2024. Biodivers Data J. 2024. PMID: 38707255 Free PMC article.
-
Gani M, Rovie-Ryan JJ, Sitam FT, Kulaimi NAM, Zheng CC, Atiqah AN, Rahim NMA, Mohammed AA. Gani M, et al. Zookeys. 2021 Dec 8;1076:25-41. doi: 10.3897/zookeys.1076.73262. eCollection 2021. Zookeys. 2021. PMID: 34975272 Free PMC article.
References
-
- Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics. 2004;20:407–415. - PubMed
-
- Brandon-Jones D, Eudey AA, Geissmann T, Groves CP, Melnick DJ, Morales JC, Shekelle M, Stewart C-B. Asian Primate Classification. Intl J Primatol. 2004;25:97–164.
-
- Chatterjee HJ. Phylogeny and Biogeography of Gibbons: A Dispersal-Vicariance Analysis. Intl J Primatol. 2006;27:699–712.
-
- Chatterjee HJ. Evolutionary Relationships Among the Gibbons: A Biogeographic Perspective. In: Lappan S, Whittaker DJ, editors. The Gibbons. New Perspectives on Small Ape Socioecology and Population Biology. Springer; New York: 2009. pp. 13–36.
-
- Corvinus G, Rimal LN. Biostratigraphy and geology of the Neogene Siwalik Group of the Surai Khola and Rato Khola areas in Nepal. Palaeogeography, Palaeoclimatology, Palaeoecology. 2001;165:251–279.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources