Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L - PubMed
doi: 10.1093/dnares/dsq030. Epub 2010 Dec 13.
Hideki Hirakawa, Sachiko Isobe, Eigo Fukai, Akiko Watanabe, Midori Kato, Kumiko Kawashima, Chiharu Minami, Akiko Muraki, Naomi Nakazaki, Chika Takahashi, Shinobu Nakayama, Yoshie Kishida, Mitsuyo Kohara, Manabu Yamada, Hisano Tsuruoka, Shigemi Sasamoto, Satoshi Tabata, Tomoyuki Aizu, Atsushi Toyoda, Tadasu Shin-i, Yohei Minakuchi, Yuji Kohara, Asao Fujiyama, Suguru Tsuchimoto, Shin'ichiro Kajiyama, Eri Makigano, Nobuko Ohmido, Nakako Shibagaki, Joyce A Cartagena, Naoki Wada, Tsutomu Kohinata, Alipour Atefeh, Shota Yuasa, Sachihiro Matsunaga, Kiichi Fukui
Affiliations
- PMID: 21149391
- PMCID: PMC3041505
- DOI: 10.1093/dnares/dsq030
Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L
Shusei Sato et al. DNA Res. 2011 Feb.
Abstract
The whole genome of Jatropha curcas was sequenced, using a combination of the conventional Sanger method and new-generation multiplex sequencing methods. Total length of the non-redundant sequences thus obtained was 285 858 490 bp consisting of 120 586 contigs and 29 831 singlets. They accounted for ~95% of the gene-containing regions with the average G + C content was 34.3%. A total of 40 929 complete and partial structures of protein encoding genes have been deduced. Comparison with genes of other plant species indicated that 1529 (4%) of the putative protein-encoding genes are specific to the Euphorbiaceae family. A high degree of microsynteny was observed with the genome of castor bean and, to a lesser extent, with those of soybean and Arabidopsis thaliana. In parallel with genome sequencing, cDNAs derived from leaf and callus tissues were subjected to pyrosequencing, and a total of 21 225 unigene data have been generated. Polymorphism analysis using microsatellite markers developed from the genomic sequence data obtained was performed with 12 J. curcas lines collected from various parts of the world to estimate their genetic diversity. The genomic sequence and accompanying information presented here are expected to serve as valuable resources for the acceleration of fundamental and applied research with J. curcas, especially in the fields of environment-related research such as biofuel production. Further information on the genomic sequences and DNA markers is available at http://www.kazusa.or.jp/jatropha/.
Figures

The strategy and status of sequencing and assembly.

GO category classification. The percentages of number of genes classified into each GO slim category in J. curcas, R. communis, and A. thaliana are, respectively, shown in blue, red, and yellow bars. (A) GO terms; (B) biological process; (C) cellular component; and (D) molecular function.
Similar articles
-
Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant.
Wu P, Zhou C, Cheng S, Wu Z, Lu W, Han J, Chen Y, Chen Y, Ni P, Wang Y, Xu X, Huang Y, Song C, Wang Z, Shi N, Zhang X, Fang X, Yang Q, Jiang H, Chen Y, Li M, Wang Y, Chen F, Wang J, Wu G. Wu P, et al. Plant J. 2015 Mar;81(5):810-21. doi: 10.1111/tpj.12761. Plant J. 2015. PMID: 25603894
-
Sharma A, Chauhan RS. Sharma A, et al. Comp Funct Genomics. 2011;2011:286089. doi: 10.1155/2011/286089. Epub 2011 May 22. Comp Funct Genomics. 2011. PMID: 21687555 Free PMC article.
-
Raposo RS, Souza IG, Veloso ME, Kobayashi AK, Laviola BG, Diniz FM. Raposo RS, et al. Genet Mol Res. 2014 Aug 7;13(3):6099-106. doi: 10.4238/2014.August.7.25. Genet Mol Res. 2014. PMID: 25117368
-
[Progress in molecular biology of Jatropha curcas].
Yang J, Liu Y, Liu Y, Yang M. Yang J, et al. Sheng Wu Gong Cheng Xue Bao. 2012 Jun;28(6):671-83. Sheng Wu Gong Cheng Xue Bao. 2012. PMID: 23016304 Review. Chinese.
-
Maghuly F, Laimer M. Maghuly F, et al. Biotechnol J. 2013 Oct;8(10):1172-82. doi: 10.1002/biot.201300231. Biotechnol J. 2013. PMID: 24092674 Free PMC article. Review.
Cited by
-
Maravi DK, Kumar S, Sharma PK, Kobayashi Y, Goud VV, Sakurai N, Koyama H, Sahoo L. Maravi DK, et al. Biotechnol Biofuels. 2016 Oct 21;9:226. doi: 10.1186/s13068-016-0642-7. eCollection 2016. Biotechnol Biofuels. 2016. PMID: 27790288 Free PMC article.
-
Chen Y, Wu P, Zhang C, Guo Y, Liao B, Chen Y, Li M, Wu G, Wang Y, Jiang H. Chen Y, et al. Int J Mol Sci. 2022 Feb 9;23(4):1924. doi: 10.3390/ijms23041924. Int J Mol Sci. 2022. PMID: 35216041 Free PMC article.
-
Muakrong N, Kikuchi S, Fukuhara S, Tanya P, Srinives P. Muakrong N, et al. PLoS One. 2018 Dec 6;13(12):e0208549. doi: 10.1371/journal.pone.0208549. eCollection 2018. PLoS One. 2018. PMID: 30521604 Free PMC article.
-
Chen MS, Zhao ML, Wang GJ, He HY, Bai X, Pan BZ, Fu QT, Tao YB, Tang MY, Martínez-Herrera J, Xu ZF. Chen MS, et al. BMC Plant Biol. 2019 Nov 4;19(1):468. doi: 10.1186/s12870-019-2069-3. BMC Plant Biol. 2019. PMID: 31684864 Free PMC article.
-
Kancharla N, Jalali S, Narasimham JV, Nair V, Yepuri V, Thakkar B, Reddy VB, Kuriakose B, Madan N, S A. Kancharla N, et al. Genes (Basel). 2019 Jan 21;10(1):69. doi: 10.3390/genes10010069. Genes (Basel). 2019. PMID: 30669588 Free PMC article.
References
-
- Openshaw K. A review of J. curcas: an oil plant of unfulfilled promise. Biomass Bioenergy. 2000;19:1–15.
-
- Wouter H.M., Wouter M.J.A., Bart M. Nature Precedings; 2009. Use of inadequate data and methodological errors lead to a dramatic overestimation of the water footprint of Jatropha curcas. hdl:10101/npre.2009.3410.1 http://precedings.nature.com/documents/3410/version/1 . - PMC - PubMed
-
- Fairless D. Biofuel: the little shrub that could—maybe. Nature. 2007;449:652–655. - PubMed
-
- Biello D. Green fuels for jets. Sci. Am. 2009;19:68–69.
-
- Carvalhoa C.R., Clarindoa W.R., Praça M.M., Araújoa F.S., Carels N. Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci. 2008;174:613–617.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases