In vivo anti-tumor effect of expressing p14ARF-TAT using a FGF2-targeted cationic lipid vector - PubMed
Purpose: To develop an efficient and safe strategy to introduce a therapeutic gene into target cells in vivo for cancer therapy. The overall efficiency is based on proper selection of the delivery vector and expressed protein.
Methods: A plasmid coding for a specific cytotoxic fusion peptide, p14ARF-TAT, was evaluated in a xenograft mouse tumor model. The expressed peptide consisted of three domains, a secretory signal, a membrane permeability segment and a cytotoxic fragment. Gene expression was verified in U87-MG cells by Western blot and cytotoxicity confirmed with CyQuant assay. To improve the delivery, a FGF2 targeting peptide, MQLPLATC, was incorporated into the vector, which was evaluated using a luciferase-expressing plasmid.
Results: The luciferase activity in vitro was two-fold higher with the targeted formulations, and cytotoxicity was three-fold higher with expression of the p14ARF-TAT protein. A murine xenograph model of human glioma (U87-MG cells) tumors was used to address in vivo activity. FGF2-targeted lipoplexes demonstrated increased tumor volume reduction as compared to non-targeted formulations. RT-PCR and Western blot of tumor homogenizes indicated p14ARF-TAT expression in tumors along with other tissues.
Conclusion: p14ARF-TAT was cytotoxic and is a promising approach when combined with an efficient targeting.