Tomography of reaction-diffusion microemulsions reveals three-dimensional Turing patterns - PubMed
- ️Sat Jan 01 2011
. 2011 Mar 11;331(6022):1309-12.
doi: 10.1126/science.1200815. Epub 2011 Feb 10.
Affiliations
- PMID: 21310963
- DOI: 10.1126/science.1200815
Tomography of reaction-diffusion microemulsions reveals three-dimensional Turing patterns
Tamás Bánsági Jr et al. Science. 2011.
Abstract
Spatially periodic, temporally stationary patterns that emerge from instability of a homogeneous steady state were proposed by Alan Turing in 1952 as a mechanism for morphogenesis in living systems and have attracted increasing attention in biology, chemistry, and physics. Patterns found to date have been confined to one or two spatial dimensions. We used tomography to study the Belousov-Zhabotinsky reaction in a microemulsion in which the polar reactants are confined to aqueous nanodroplets much smaller than the scale of the stationary patterns. We demonstrate the existence of Turing patterns that can exist only in three dimensions, including curved surfaces, hexagonally packed cylinders, spots, and labyrinthine and lamellar patterns.
Similar articles
-
Kaminaga A, Vanag VK, Epstein IR. Kaminaga A, et al. J Chem Phys. 2005 May 1;122(17):174706. doi: 10.1063/1.1888386. J Chem Phys. 2005. PMID: 15910059
-
Alonso S, John K, Bär M. Alonso S, et al. J Chem Phys. 2011 Mar 7;134(9):094117. doi: 10.1063/1.3559154. J Chem Phys. 2011. PMID: 21384960
-
Carballido-Landeira J, Vanag VK, Epstein IR. Carballido-Landeira J, et al. Phys Chem Chem Phys. 2010 Apr 21;12(15):3656-65. doi: 10.1039/b919278f. Epub 2010 Feb 23. Phys Chem Chem Phys. 2010. PMID: 20358062
-
How animals get their skin patterns: fish pigment pattern as a live Turing wave.
Kondo S, Iwashita M, Yamaguchi M. Kondo S, et al. Int J Dev Biol. 2009;53(5-6):851-6. doi: 10.1387/ijdb.072502sk. Int J Dev Biol. 2009. PMID: 19557690 Review.
-
Insights from chemical systems into Turing-type morphogenesis.
Konow C, Dolnik M, Epstein IR. Konow C, et al. Philos Trans A Math Phys Eng Sci. 2021 Dec 27;379(2213):20200269. doi: 10.1098/rsta.2020.0269. Epub 2021 Nov 8. Philos Trans A Math Phys Eng Sci. 2021. PMID: 34743602 Review.
Cited by
-
Optimal control of networked reaction-diffusion systems.
Gao S, Chang L, Romić I, Wang Z, Jusup M, Holme P. Gao S, et al. J R Soc Interface. 2022 Mar;19(188):20210739. doi: 10.1098/rsif.2021.0739. Epub 2022 Mar 9. J R Soc Interface. 2022. PMID: 35259961 Free PMC article.
-
Pattern formation mechanisms of self-organizing reaction-diffusion systems.
Landge AN, Jordan BM, Diego X, Müller P. Landge AN, et al. Dev Biol. 2020 Apr 1;460(1):2-11. doi: 10.1016/j.ydbio.2019.10.031. Epub 2020 Jan 30. Dev Biol. 2020. PMID: 32008805 Free PMC article. Review.
-
Zheng F, Xiao Y, Liu H, Fan Y, Dao M. Zheng F, et al. Adv Biol (Weinh). 2021 Jun;5(6):e2000024. doi: 10.1002/adbi.202000024. Epub 2021 Apr 15. Adv Biol (Weinh). 2021. PMID: 33856745 Free PMC article. Review.
-
Selck DA, Karymov MA, Sun B, Ismagilov RF. Selck DA, et al. Anal Chem. 2013 Nov 19;85(22):11129-36. doi: 10.1021/ac4030413. Epub 2013 Nov 7. Anal Chem. 2013. PMID: 24199852 Free PMC article.
-
A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems.
Lo WC, Chen L, Wang M, Nie Q. Lo WC, et al. J Comput Phys. 2012 Jun 1;231(15):5062-5077. doi: 10.1016/j.jcp.2012.04.006. J Comput Phys. 2012. PMID: 22773849 Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources