Effects of the v-mos oncogene on Xenopus development: meiotic induction in oocytes and mitotic arrest in cleaving embryos - PubMed
Effects of the v-mos oncogene on Xenopus development: meiotic induction in oocytes and mitotic arrest in cleaving embryos
R S Freeman et al. J Cell Biol. 1990 Aug.
Abstract
Previous work has demonstrated that the Xenopus protooncogene mosxe can induce the maturation of prophase-arrested Xenopus oocytes. Recently, we showed that mosxe can transform murine NIH3T3 fibroblasts, although it exhibited only 1-2% of the transforming activity of the v-mos oncogene. In this study we have investigated the ability of the v-mos protein to substitute for the mosxe protein in stimulating Xenopus oocytes to complete meiosis. Microinjection of in vitro synthesized RNAs encoding either the mosxe or v-mos proteins stimulates resting oocytes to undergo germinal vesicle breakdown. Microinjection of an antisense oligonucleotide spanning the initiation codon of the mosxe gene blocked progesterone-induced oocyte maturation. When oocytes were microinjected first with the mosxe antisense oligonucleotide, and subsequently with in vitro synthesized v-mos RNA, meiotic maturation was rescued as evidenced by germinal vesicle breakdown. The v-mos protein exhibited in vitro kinase activity when recovered by immunoprecipitation from either microinjected Xenopus oocytes or transfected monkey COS-1 cells; however, in parallel experiments, we were unable to detect in vitro kinase activity associated with the mosxe protein. Microinjection of in vitro synthesized v-mos RNA into cleaving Xenopus embryos resulted in mitotic arrest, demonstrating that the v-mos protein can function like the mosxe protein as a component of cytostatic factor. These results exemplify the apparently conflicting effects of the v-mos protein, namely, its ability to induce maturation of oocytes, its ability to arrest mitotic cleavage of Xenopus embryo, and its ability to transform mammalian fibroblasts.
Similar articles
-
Kanki JP, Donoghue DJ. Kanki JP, et al. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5794-8. doi: 10.1073/pnas.88.13.5794. Proc Natl Acad Sci U S A. 1991. PMID: 1648231 Free PMC article.
-
Freeman RS, Pickham KM, Kanki JP, Lee BA, Pena SV, Donoghue DJ. Freeman RS, et al. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5805-9. doi: 10.1073/pnas.86.15.5805. Proc Natl Acad Sci U S A. 1989. PMID: 2527365 Free PMC article.
-
Freeman RS, Meyer AN, Li J, Donoghue DJ. Freeman RS, et al. J Cell Biol. 1992 Feb;116(3):725-35. doi: 10.1083/jcb.116.3.725. J Cell Biol. 1992. PMID: 1530949 Free PMC article.
-
Synthesis and function of Mos: the control switch of vertebrate oocyte meiosis.
Gebauer F, Richter JD. Gebauer F, et al. Bioessays. 1997 Jan;19(1):23-8. doi: 10.1002/bies.950190106. Bioessays. 1997. PMID: 9008414 Review.
-
Mos and the cell cycle: the molecular basis of the transformed phenotype.
Yew N, Strobel M, Vande Woude GF. Yew N, et al. Curr Opin Genet Dev. 1993 Feb;3(1):19-25. doi: 10.1016/s0959-437x(05)80336-3. Curr Opin Genet Dev. 1993. PMID: 8384034 Review.
Cited by
-
Walter SA, Guadagno TM, Ferrell JE Jr. Walter SA, et al. Mol Biol Cell. 1997 Nov;8(11):2157-69. doi: 10.1091/mbc.8.11.2157. Mol Biol Cell. 1997. PMID: 9362060 Free PMC article.
-
Kanki JP, Donoghue DJ. Kanki JP, et al. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5794-8. doi: 10.1073/pnas.88.13.5794. Proc Natl Acad Sci U S A. 1991. PMID: 1648231 Free PMC article.
-
Cofre J, Saalfeld K. Cofre J, et al. Front Cell Dev Biol. 2023 Jan 4;10:1067248. doi: 10.3389/fcell.2022.1067248. eCollection 2022. Front Cell Dev Biol. 2023. PMID: 36684435 Free PMC article.
-
Liu H, Vuyyuru VB, Pham CD, Yang Y, Singh B. Liu H, et al. Oncogene. 1999 Jun 10;18(23):3461-70. doi: 10.1038/sj.onc.1202699. Oncogene. 1999. PMID: 10376524
-
Kobayashi H, Minshull J, Ford C, Golsteyn R, Poon R, Hunt T. Kobayashi H, et al. J Cell Biol. 1991 Aug;114(4):755-65. doi: 10.1083/jcb.114.4.755. J Cell Biol. 1991. PMID: 1831203 Free PMC article.