On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data - PubMed
- ️Sat Jan 01 2011
. 2011 May 10;30(10):1105-17.
doi: 10.1002/sim.4154. Epub 2011 Jan 13.
Affiliations
- PMID: 21484848
- PMCID: PMC3079915
- DOI: 10.1002/sim.4154
On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data
Hajime Uno et al. Stat Med. 2011.
Abstract
For modern evidence-based medicine, a well thought-out risk scoring system for predicting the occurrence of a clinical event plays an important role in selecting prevention and treatment strategies. Such an index system is often established based on the subject's 'baseline' genetic or clinical markers via a working parametric or semi-parametric model. To evaluate the adequacy of such a system, C-statistics are routinely used in the medical literature to quantify the capacity of the estimated risk score in discriminating among subjects with different event times. The C-statistic provides a global assessment of a fitted survival model for the continuous event time rather than focussing on the prediction of bit-year survival for a fixed time. When the event time is possibly censored, however, the population parameters corresponding to the commonly used C-statistics may depend on the study-specific censoring distribution. In this article, we present a simple C-statistic without this shortcoming. The new procedure consistently estimates a conventional concordance measure which is free of censoring. We provide a large sample approximation to the distribution of this estimator for making inferences about the concordance measure. Results from numerical studies suggest that the new procedure performs well in finite sample.
Copyright © 2011 John Wiley & Sons, Ltd.
Figures
Similar articles
-
On comparing 2 correlated C indices with censored survival data.
Han X, Zhang Y, Shao Y. Han X, et al. Stat Med. 2017 Nov 10;36(25):4041-4049. doi: 10.1002/sim.7414. Epub 2017 Jul 31. Stat Med. 2017. PMID: 28758216 Free PMC article.
-
Concordance indices with left-truncated and right-censored data.
Hartman N, Kim S, He K, Kalbfleisch JD. Hartman N, et al. Biometrics. 2023 Sep;79(3):1624-1634. doi: 10.1111/biom.13714. Epub 2022 Jul 11. Biometrics. 2023. PMID: 35775234 Free PMC article.
-
Estimating subject-specific dependent competing risk profile with censored event time observations.
Li Y, Tian L, Wei LJ. Li Y, et al. Biometrics. 2011 Jun;67(2):427-35. doi: 10.1111/j.1541-0420.2010.01456.x. Epub 2010 Jul 9. Biometrics. 2011. PMID: 20618311 Free PMC article.
-
Wang X, Claggett BL, Tian L, Malachias MVB, Pfeffer MA, Wei LJ. Wang X, et al. JAMA Cardiol. 2023 Mar 1;8(3):290-295. doi: 10.1001/jamacardio.2022.5279. JAMA Cardiol. 2023. PMID: 36723915 Free PMC article. Review.
-
Survival Analysis and Interpretation of Time-to-Event Data: The Tortoise and the Hare.
Schober P, Vetter TR. Schober P, et al. Anesth Analg. 2018 Sep;127(3):792-798. doi: 10.1213/ANE.0000000000003653. Anesth Analg. 2018. PMID: 30015653 Free PMC article. Review.
Cited by
-
Comparison of Cox Model Methods in A Low-dimensional Setting with Few Events.
Ojeda FM, Müller C, Börnigen D, Trégouët DA, Schillert A, Heinig M, Zeller T, Schnabel RB. Ojeda FM, et al. Genomics Proteomics Bioinformatics. 2016 Aug;14(4):235-43. doi: 10.1016/j.gpb.2016.03.006. Epub 2016 May 17. Genomics Proteomics Bioinformatics. 2016. PMID: 27224515 Free PMC article.
-
Hu C, Song Y, Zhang J, Dai L, Tang C, Li M, Liao W, Zhou Y, Xu Y, Zhang YY, Zhou Y. Hu C, et al. Front Oncol. 2021 May 21;11:649682. doi: 10.3389/fonc.2021.649682. eCollection 2021. Front Oncol. 2021. PMID: 34094938 Free PMC article.
-
Austin PC, Pencinca MJ, Steyerberg EW. Austin PC, et al. Stat Methods Med Res. 2017 Jun;26(3):1053-1077. doi: 10.1177/0962280214567141. Epub 2015 Feb 5. Stat Methods Med Res. 2017. PMID: 25656552 Free PMC article.
-
Sarica A, Aracri F, Bianco MG, Arcuri F, Quattrone A, Quattrone A; Alzheimer’s Disease Neuroimaging Initiative. Sarica A, et al. Brain Inform. 2023 Nov 18;10(1):31. doi: 10.1186/s40708-023-00211-w. Brain Inform. 2023. PMID: 37979033 Free PMC article.
-
Hypothesis-free deep survival learning applied to the tumour microenvironment in gastric cancer.
Meier A, Nekolla K, Hewitt LC, Earle S, Yoshikawa T, Oshima T, Miyagi Y, Huss R, Schmidt G, Grabsch HI. Meier A, et al. J Pathol Clin Res. 2020 Oct;6(4):273-282. doi: 10.1002/cjp2.170. Epub 2020 Jun 27. J Pathol Clin Res. 2020. PMID: 32592447 Free PMC article.
References
-
- Anderson KM, Odell PM, Wilson PW, Kannel WB. Cardiovascular risk profiles. American Heart Journal. 1991;121:293–8. - PubMed
-
- Parikh NI, Pencina MJ, Wang TJ, Benjamin EJ, Lanier KJ, Levy D, D’Agostino RB, Sr, Kannel WB, Vasan RS. A risk score for predicting near-term incidence of hypertension: the Framingham Heart Study. Annals of Internal Medicine. 2008;148(2):102–10. - PubMed
-
- Bamber D. The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. Journal of Mathematical Psychology. 1975;12:387–415.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources