Emerging patterns of epigenomic variation - PubMed
Review
Emerging patterns of epigenomic variation
Aleksandar Milosavljevic. Trends Genet. 2011 Jun.
Abstract
Fuelled by new sequencing technologies, epigenome mapping projects are revealing epigenomic variation at all levels of biological complexity, from species to cells. Comparisons of methylation profiles among species reveal evolutionary conservation of gene body methylation patterns, pointing to the fundamental role of epigenomes in gene regulation. At the human population level, epigenomic changes provide footprints of the effects of genomic variants within the vast nonprotein-coding fraction of the genome, and comparisons of the epigenomes of parents and their offspring point to quantitative epigenomic parent-of-origin effects confounding classical Mendelian genetics. At the organismal level, comparisons of epigenomes from diverse cell types provide insights into cellular differentiation. Finally, comparisons of epigenomes from monozygotic twins help dissect genetic and environmental influences on human phenotypes and longitudinal comparisons reveal aging-associated epigenomic drift. The development of new bioinformatic frameworks for comparative epigenome analysis is putting epigenome maps within the reach of researchers across a wide spectrum of biological disciplines.
Copyright © 2011 Elsevier Ltd. All rights reserved.
Figures

A schematic illustration of the space of epigenomic variation. The displayed DNA methylation and histone marks (from [53]) were remapped on the hg19 reference genome assembly and are available for browsing and download from the Human Epigenome Atlas Release 2 site (accessible at
http://www.epigenomeatlas.organd other sites). Key developmental regulators HOXA1- HOXA13 occur in left-to right order in the HOXA cluster. The cluster is in a “poised” state as indicated by the combination of active (H3K4me3) and inactive (H3K27me3) marks. Increase in active and decrease in inactive marks over HOXA1- HOXA9 genes occurs in fibroblasts. Parallel changes in methylation can also be observed.
Similar articles
-
Genetic sources of population epigenomic variation.
Taudt A, Colomé-Tatché M, Johannes F. Taudt A, et al. Nat Rev Genet. 2016 Jun;17(6):319-32. doi: 10.1038/nrg.2016.45. Epub 2016 May 9. Nat Rev Genet. 2016. PMID: 27156976 Review.
-
The epigenome and plant development.
He G, Elling AA, Deng XW. He G, et al. Annu Rev Plant Biol. 2011;62:411-35. doi: 10.1146/annurev-arplant-042110-103806. Annu Rev Plant Biol. 2011. PMID: 21438682 Review.
-
McLean C, Gluckman P, Sheppard A. McLean C, et al. J Proteomics. 2012 Jun 27;75(12):3400-9. doi: 10.1016/j.jprot.2012.01.036. Epub 2012 Feb 14. J Proteomics. 2012. PMID: 22353436
-
A likelihood approach to testing hypotheses on the co-evolution of epigenome and genome.
Lu J, Cao X, Zhong S. Lu J, et al. PLoS Comput Biol. 2018 Dec 26;14(12):e1006673. doi: 10.1371/journal.pcbi.1006673. eCollection 2018 Dec. PLoS Comput Biol. 2018. PMID: 30586383 Free PMC article.
-
Furukawa H, Oka S, Matsui T, Hashimoto A, Arinuma Y, Komiya A, Fukui N, Tsuchiya N, Tohma S. Furukawa H, et al. Hum Immunol. 2013 Feb;74(2):170-5. doi: 10.1016/j.humimm.2012.11.007. Epub 2012 Nov 29. Hum Immunol. 2013. PMID: 23200755
Cited by
-
Uncovering correlated variability in epigenomic datasets using the Karhunen-Loeve transform.
Madrigal P, Krajewski P. Madrigal P, et al. BioData Min. 2015 Jul 1;8:20. doi: 10.1186/s13040-015-0051-7. eCollection 2015. BioData Min. 2015. PMID: 26140054 Free PMC article.
-
The fate is not always written in the genes: epigenomics in epidemiologic studies.
Langevin SM, Kelsey KT. Langevin SM, et al. Environ Mol Mutagen. 2013 Aug;54(7):533-41. doi: 10.1002/em.21762. Epub 2013 Feb 26. Environ Mol Mutagen. 2013. PMID: 23444110 Free PMC article. Review.
-
Genome-Wide Epigenetic Studies in Human Disease: A Primer on -Omic Technologies.
Yan H, Tian S, Slager SL, Sun Z, Ordog T. Yan H, et al. Am J Epidemiol. 2016 Jan 15;183(2):96-109. doi: 10.1093/aje/kwv187. Epub 2015 Dec 30. Am J Epidemiol. 2016. PMID: 26721890 Free PMC article.
-
Liberman SA, Mashoodh R, Thompson RC, Dolinoy DC, Champagne FA. Liberman SA, et al. Ecol Evol. 2012 Dec;2(12):3123-31. doi: 10.1002/ece3.416. Epub 2012 Nov 8. Ecol Evol. 2012. PMID: 23301177 Free PMC article.
-
Williams AC, Hill LJ, Ramsden DB. Williams AC, et al. Curr Gerontol Geriatr Res. 2012;2012:302875. doi: 10.1155/2012/302875. Epub 2012 Mar 21. Curr Gerontol Geriatr Res. 2012. PMID: 22536229 Free PMC article.
References
-
- Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54. - PubMed
-
- Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396–8. - PubMed
-
- Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–76. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources