pubmed.ncbi.nlm.nih.gov

Adhesins of human pathogens from the genus Yersinia - PubMed

Review

Adhesins of human pathogens from the genus Yersinia

Jack C Leo et al. Adv Exp Med Biol. 2011.

Abstract

Bacteria of the Gram-negative genus Yersinia are environmentally ubiquitous. Three species are of medical importance: the intestinal pathogens Y. enterocolitica and Y. pseudotuberculosis, and the plague bacillus Y. pestis. The two former species, spread by contaminated food or water, cause a range of gastrointestinal symptoms and, rarely, sepsis. On occasion, the primary infection is followed by autoimmune sequelae such as reactive arthritis. Plague is a systemic disease with high mortality. It is a zoonosis spread by fleas, or more rarely by droplets from individuals suffering from pneumonic plague. Y. pestis is one of the most virulent of bacteria, and recent findings of antibiotic-resistant strains together with its potential use as a bioweapon have increased interest in the species. In addition to being significant pathogens in their own right, the yersiniae have been used as model systems for a number of aspects of pathogenicity. This chapter reviews the molecular mechanisms of adhesion in yersiniae. The enteropathogenic species share three adhesins: invasin, YadA and Ail. Invasin is the first adhesin required for enteric infection; it binds to β(1) integrins on microfold cells in the distal ileum, leading to the ingestion of the bacteria and allows them to cross the intestinal epithelium. YadA is the major adhesin in host tissues. It is a multifunctional protein, conferring adherence to cells and extracellular matrix components, serum and phagocytosis resistance, and the ability to autoagglutinate. Ail has a minor role in adhesion and serum resistance. Y. pestis lacks both invasin and YadA, but expresses several other adhesins. These include the pH 6 antigen and autotransporter adhesins. Also the plasminogen activator of Y. pestis can mediate adherence to host cells. Although the adhesins of the pathogenic yersiniae have been studied extensively, their exact roles in the biology of infection remain elusive.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources