Naturally occurring aminoacyl-tRNA synthetases editing-domain mutations that cause mistranslation in Mycoplasma parasites - PubMed
- ️Sat Jan 01 2011
Naturally occurring aminoacyl-tRNA synthetases editing-domain mutations that cause mistranslation in Mycoplasma parasites
Li Li et al. Proc Natl Acad Sci U S A. 2011.
Abstract
Mycoplasma parasites escape host immune responses via mechanisms that depend on remarkable phenotypic plasticity. Identification of these mechanisms is of great current interest. The aminoacyl-tRNA synthetases (AARSs) attach amino acids to their cognate tRNAs, but occasionally make errors that substitute closely similar amino acids. AARS editing pathways clear errors to avoid mistranslation during protein synthesis. We show here that AARSs in Mycoplasma parasites have point mutations and deletions in their respective editing domains. The deleterious effect on editing was confirmed with a specific example studied in vitro. In vivo mistranslation was determined by mass spectrometric analysis of proteins produced in the parasite. These mistranslations are uniform cases where the predicted closely similar amino acid replaced the correct one. Thus, natural AARS editing-domain mutations in Mycoplasma parasites cause mistranslation. We raise the possibility that these mutations evolved as a mechanism for antigen diversity to escape host defense systems.
Conflict of interest statement
The authors declare no conflict of interest.
Figures

Degenerated editing domains of Mycoplasma AARS. (A) Phylogenetic tree of Mycoplasma based on 16S rRNA. Bootstrap values are shown for each node and scale bar denotes substitutions per site. Predicted editing-defective AARS are indicated in boxes (Right) (see also
Figs. S1–S3). (B) Alignment of LeuRS CP1 domain with key editing site residues indicated (see also
Table S3). Shaded and black boxes represent conserved and homologous residues. (C) Tandem MS analysis of precursor peak m/z = 796.4 at z = 3 identified a mistranslated peptide in M. mobile. A fragment peak (m/z = 411.2; y3 ion of YPIILEDGFSEHDWDA(Y)TK; phosphopyruvate hydratase) was confirmed by the balance of the fragmentation spectrum. (Inset) Predicted y2 and y3 ion positions for the genome-encoded peptide (dotted bars) and observed mistranslated product (solid bars; F → Y). (D) Identification of faithfully translated peptide YPIILEDGFSEHDWDA(F)TK for phosphopyruvate hydratase (peak of m/z = 395.2 at the y3 ion position).

Tandem MS analysis of single peptides from M. mobile and E. coli that express M. mobile LeuRS demonstrate mistranslation of leucine codons. An L → V substitution of M. mobile peptides LTKLINS(L/V)K from phosphopentomutase (A) and IKTSVKN(L/V)AK from phosphotransacetylase (B) respectively generated peaks of m/z = 869.2 [confirmatory b8 ion of LTKLINS(V)K; precursor peak m/z = 508.5 at z = 2] and m/z = 870.2 [confirmatory b8 ion of IKTSVKN(V)AK; precursor peak m/z = 544.3 at z = 2]. (C) An L → V substitution of E. coli peptide LINQGMI(L)GK generated a peak of m/z = 303.2 corresponding to the confirmatory y3 ion of LINQGMI(V)GK. An L → M substitution of E. coli peptides HLENKIIKKEIYIAKKI(L)NFII (D) and SKDKFYA(L)D MFPYPSGSGLHVGHPEGYTATDIISR (E) respectively generated peaks of m/z = 1105.7 [confirmatory ion of HLENKIIKKEIY IAKKI(Mox)NFII] and m/z = 953.5 [confirmatory b8 ion of SKDKFYA(Mox)DMFPYPSGSGLHVGHPEGYTATDIISR]. Methionine was typically oxidized to methionine sulfoxide (see also
).

Wild-type M. mobile LeuRS mischarges tRNALeu. Deacylation reactions contained approximately 20 μM [3H]-Val-tRNALeu (A), approximately 6.5 μM [3H]-Ile-tRNALeu (B) or 100 μM [35S]-Met-tRNALeu (C) and 100 nM M. mobile, E. coli wild-type or mutant LeuRS. Mischarging assays incorporated 160 μM [14C]-valine (50 μCi/mL; D), 21 μM [3H]-isoleucine (166 Ci/mmol; E) or 20 μM [35S]-methionine (20 μCi/mL; F) and 1 μM M. mobile or E. coli LeuRS. Editing-defective E. coli LeuRS (Ec-Ed) mutant is a positive control. (G) Acid gel of tRNALeu charged with [35S]-methionine. Abbreviations: (square), Ec-WT; (inverted triangle), Mm; (triangle), Ec-Ed; and (diamond), no enzyme control (No E). Error bars represent standard deviations from triplicated reactions.

Proposed evolutionary scheme for LeuRS CP1 editing module degeneration in Mycoplasma. M. synoviae and M. agalactiae LeuRS were acquired from Proteobacteria via horizontal gene transfer (
Fig. S8). Primary structure degeneration of the CP1 domain resulted in M. agalactiae and M. synoviae LeuRS CP1a and CP1s (Left). Genome reduction in M. mobile completely eliminated the CP1 editing module in LeuRS (ΔCP1; Right).
Similar articles
-
Cvetesic N, Gruic-Sovulj I. Cvetesic N, et al. Methods. 2017 Jan 15;113:13-26. doi: 10.1016/j.ymeth.2016.09.015. Epub 2016 Oct 3. Methods. 2017. PMID: 27713080 Review.
-
Yadavalli SS, Ibba M. Yadavalli SS, et al. Nucleic Acids Res. 2013 Jan;41(2):1104-12. doi: 10.1093/nar/gks1240. Epub 2012 Dec 6. Nucleic Acids Res. 2013. PMID: 23222133 Free PMC article.
-
Trans-editing by aminoacyl-tRNA synthetase-like editing domains.
Kuzmishin Nagy AB, Bakhtina M, Musier-Forsyth K. Kuzmishin Nagy AB, et al. Enzymes. 2020;48:69-115. doi: 10.1016/bs.enz.2020.07.002. Epub 2020 Sep 8. Enzymes. 2020. PMID: 33837712 Review.
-
Conformational and chemical selection by a trans-acting editing domain.
Danhart EM, Bakhtina M, Cantara WA, Kuzmishin AB, Ma X, Sanford BL, Vargas-Rodriguez O, Košutić M, Goto Y, Suga H, Nakanishi K, Micura R, Foster MP, Musier-Forsyth K. Danhart EM, et al. Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):E6774-E6783. doi: 10.1073/pnas.1703925114. Epub 2017 Aug 2. Proc Natl Acad Sci U S A. 2017. PMID: 28768811 Free PMC article.
-
Bacusmo JM, Kuzmishin AB, Cantara WA, Goto Y, Suga H, Musier-Forsyth K. Bacusmo JM, et al. RNA Biol. 2018;15(4-5):576-585. doi: 10.1080/15476286.2017.1353846. Epub 2017 Nov 3. RNA Biol. 2018. PMID: 28737471 Free PMC article.
Cited by
-
Protein aggregation caused by aminoglycoside action is prevented by a hydrogen peroxide scavenger.
Ling J, Cho C, Guo LT, Aerni HR, Rinehart J, Söll D. Ling J, et al. Mol Cell. 2012 Dec 14;48(5):713-22. doi: 10.1016/j.molcel.2012.10.001. Epub 2012 Oct 30. Mol Cell. 2012. PMID: 23122414 Free PMC article.
-
Mechanism of oxidant-induced mistranslation by threonyl-tRNA synthetase.
Wu J, Fan Y, Ling J. Wu J, et al. Nucleic Acids Res. 2014 Jun;42(10):6523-31. doi: 10.1093/nar/gku271. Epub 2014 Apr 17. Nucleic Acids Res. 2014. PMID: 24744241 Free PMC article.
-
Piedrafita G, Keller MA, Ralser M. Piedrafita G, et al. Biomolecules. 2015 Sep 10;5(3):2101-22. doi: 10.3390/biom5032101. Biomolecules. 2015. PMID: 26378592 Free PMC article. Review.
-
Conditional accumulation of toxic tRNAs to cause amino acid misincorporation.
Zimmerman SM, Kon Y, Hauke AC, Ruiz BY, Fields S, Phizicky EM. Zimmerman SM, et al. Nucleic Acids Res. 2018 Sep 6;46(15):7831-7843. doi: 10.1093/nar/gky623. Nucleic Acids Res. 2018. PMID: 30007351 Free PMC article.
-
Kumar S, Das M, Hadad CM, Musier-Forsyth K. Kumar S, et al. J Phys Chem B. 2013 Apr 25;117(16):4521-7. doi: 10.1021/jp308628y. Epub 2012 Dec 6. J Phys Chem B. 2013. PMID: 23185990 Free PMC article.
References
-
- Maniloff J. In: Molecular Biology and Pathogenicity of Mycoplasmas. Razin S, Herrmann R, editors. New York: Kluwer Academic; 2002. pp. 31–44.
-
- Rottem S. Interaction of Mycoplasmas with host cells. Physiol Rev. 2003;83:417–432. - PubMed
-
- Ibba M, Söll D. Quality control mechanisms during translation. Science. 1999;286:1893–1897. - PubMed
-
- Fersht AR. Sieves in sequence. Science. 1998;280:541. - PubMed
-
- An S, Musier-Forsyth K. Trans-editing of Cys-tRNAPro by Haemophilus influenzae YbaK protein. J Biol Chem. 2004;279:42359–42362. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous